
YAWL - User Manual
Version 5.2

© 2004-2025 The YAWL Foundation

2

Contents

1 Introduction 11
1.1 What is YAWL? . 11

1.2 Obtaining the Latest Version of YAWL . 12

1.3 The YAWL Foundation . 12

1.4 Documentation . 12

2 Installation 15
2.1 Requirements . 15

2.2 Installing YAWL . 16

2.3 YAWL Control Panel . 18

2.4 Manual Installation (YAWL Enterprise) . 22

3 Getting Started with YAWL 29
3.1 Introduction . 29

3.2 Terminology . 30

3.3 Building a Simple Workflow Example . 31

3.4 Advanced Workflow Concepts . 34

3.5 Where To From Here . 40

4 The Editor 43
4.1 Launching the YAWL Editor . 43

4.2 The YAWL Editor Workspace . 44

4.3 Working with YAWL Specification files . 51

4.4 The Control-Flow Perspective . 55

4.5 Changing the Appearance of Your Specification . 65

4.6 Cancellation Sets . 68

4.7 The Data Perspective . 70

4.8 The Resource Perspective . 91

4.9 The Preferences Dialog . 98

4.10 Connections . 99

4.11 Specification Analysis . 101

4.12 Automated Tasks . 103

4.13 Task Timers . 105

4.14 Document Type – passing files as data . 108

3

4 CONTENTS

4.15 Custom Forms . 108

4.16 Task Documentation . 108

4.17 Configurable Logging . 109

4.18 Extended Attributes . 112

4.19 Configurable YAWL . 117

4.20 Checking for Updates . 122

4.21 About Dialog . 123

5 How to Manipulate Data in YAWL 125

5.1 Introduction . 125

5.2 Data Visibility . 125

5.3 Data Transfer . 126

5.4 Data-related Issues . 128

5.5 Illustrative Examples . 130

6 The Runtime Environment 147

6.1 Engine Configuration Settings . 148

6.2 Resource Service Configuration . 149

6.3 Logging On . 151

6.4 Administration . 151

6.5 Managing Non-Human Resources . 164

6.6 Resource Calendar Management . 166

6.7 Work Queues . 169

6.8 My Profile . 174

6.9 Team Queues . 174

7 The Monitor Service 177

7.1 Installation and Logging On . 177

7.2 Active Cases . 177

7.3 Work Items . 178

7.4 Parameters . 179

8 The Worklet Service 181

8.1 What is the Worklet Service? . 181

8.2 Installation . 182

8.3 The Worklet Service and Dynamic Flexibility . 183

8.4 The Worklet Service and Exception Handling . 187

8.5 Worklet Rule Sets . 191

8.6 The Worklet Management Plugin (or Rules Editor) . 193

8.7 Walkthrough – Using the Worklet Service . 205

8.8 Defining New Functions for Rule Node Conditions . 222

9 Other Services 227

9.1 Document Store . 227

CONTENTS 5

9.2 Web Service Invoker Service . 227

9.3 SMS Service . 228

9.4 Mail Service . 228

9.5 Twitter Service . 230

9.6 Digital Signature Service . 230

10 Using openLDAP for Authentication 237
10.1 General Setup . 237

10.2 Populating the openLDAP Server using the YAWL openLDAP Schema 239

10.3 Migrating to LDAP . 245

11 Seeking Help 247

6 CONTENTS

7

8 CONTENTS

Document Control

Arthur ter Hofstede version 1.9 September 2008 Consolidation of previous documents,
conversion to LATEX of some of them,
general cleaning and extensions
(e.g. new chapter on engine).

Arthur ter Hofstede version 1.99 October 2008 First version of chapter on resource
perspective.

Michael Adams version 2.0 July 2009 Major rewrite and additional sections
to align the manual with v2.0.
Public release version for YAWL 2.0.

Michael Adams version 2.0f September 2009 Updates for several minor Editor
enhancements and addition of the
Twitter Service & iGoogle Gadget.

Michael Adams version 2.1b June 2010 Updates for version 2.1.

Marcello La Rosa version 2.1c February 2011 Update for C-YAWL.

Michael Adams version 2.2 August 2011 Revision of entire manual and
additions for YAWL 2.2.

Michael Adams version 2.3 April 2012 Updates for version 2.3.

Michael Adams version 3.0 July 2014 Major rewrites and updates for version 3.0.

Michael Adams version 3.0a September 2014 Updated installation chapter.

Michael Adams version 4.0 April 2016 Updates and additions for version 4.0.

Michael Adams version 4.0a April 2016 Minor typos.

Michael Adams version 4.1 May 2016 Updates for version 4.1.

Michael Adams version 4.2a August 2018 Minor updates and fixes.
Added openLDAP chapter

Michael Adams version 4.3 February 2020 Minor updates.

Michael Adams version 5 December 2022 Version 5 updates.

Michael Adams version 5.1 July 2024 Version 5.1 updates.

Michael Adams version 5.2 March 2025 Version 5.2 updates.

CONTENTS 9

Feedback?

Any feedback regarding this manual is very much appreciated. If you find there is a topic that is miss-
ing or may not have been clearly explained, please send your feedback to yawlmanual@gmail.com. All
suggested improvements will be considered for incorporation into future versions of the manual.

Sources

The first version of this document (1.9) combined the following documents:

1. A “New Features” document produced by Lachlan Aldred.

2. A “Getting Started with YAWL” document by Lindsay Bradford and Marlon Dumas. This formed the
basis for Chapter 3.

3. A “Editor 2.0 User Manual” document of which first versions were produced by Sean Kneipp and
subsequent versions by Lindsay Bradford, Jessica Prestedge, Marcello La Rosa, and Michael Adams.
This document was the original editor chapter, which has since been heavily revised and rewritten.

4. A “Data Manipulation in YAWL” document by Chun Ouyang (with some of the figures on the use
of XML technology in YAWL taken from a presentation by Lachlan Aldred). This forms the basis for
Chapter 5.

5. A “YAWL Engine User Manual” (Beta 8 release) document created by Sean Kneipp with subsequent
additions/updates by Guy Redding, Lachlan Aldred and Michael Adams. This document provided
inspiration for Chapter 6.

6. A “The Worklet Custom Service for YAWL - Installation and User Manual” document created and later
revised by Michael Adams. Lachlan Aldred merged the installation manual. This document became
the original Chapter 8.

7. An “Installation Manual” (Engine Beta 8.2 - Editor 1.5) first created by Sean Kneipp and with sub-
sequent changes/corrections/extensions by Guy Redding, Lachlan Aldred, Petia Wohed, Michael
Adams, Moe Wynn, and Marcello La Rosa. This formed the basis for Chapter 2. Its introduction
formed the basis for Chapter 1.

10 CONTENTS

Chapter 1

Introduction

This chapter provides a brief background introduction to YAWL and the YAWL Foundation.

1.1 What is YAWL?

Based on a rigourous analysis of existing workflow management systems and workflow languages, a new
workflow language called YAWL (Yet Another Workflow Language) was developed by Wil van der Aalst
(Eindhoven University of Technology, the Netherlands) and Arthur ter Hofstede (Queensland University of
Technology, Australia) in 2002. This language was based on the one hand on Petri nets, a well-established
concurrency theory with a graphical representation, and on the other hand on the well-known Workflow
Patterns (http://www.workflowpatterns.com). The Workflow Patterns form a generally accepted
benchmark for the suitability of a process specification language. Petri nets can capture quite a few of
the identified control-flow patterns, but they lack support for the multiple instance patterns, the cancella-
tion patterns and the generalised OR-join. YAWL therefore extends Petri nets with dedicated constructs to
deal with these patterns.

YAWL offers the following distinctive features:

• YAWL offers comprehensive support for the control-flow patterns. It is the most powerful process
specification language for capturing control-flow dependencies.

• The data perspective in YAWL is captured through the use of XML Schema, XPath and XQuery.

• YAWL offers comprehensive support for the resource patterns. It is the most powerful process speci-
fication language for capturing resourcing requirements.

• YAWL has a proper formal foundation. This makes its specifications unambiguous and automated
verification becomes possible (YAWL offers two distinct approaches to verification, one based on Reset
nets, the other based on transition invariants through the WofYAWL editor plug-in).

• YAWL has been developed independent from any commercial interests. It simply aims to be the most
powerful language for process specification.

• For its expressiveness, YAWL offers relatively few constructs (compare this e.g. to BPMN!).

• YAWL offers unique support for exceptional handling, both those that were and those that were not
anticipated at design time.

• YAWL offers unique support for dynamic workflow through the Worklets approach. Workflows can
thus evolve over time to meet new and changing requirements.

• YAWL aims to be straightforward to deploy. It offers a number of automatic installers and an intuitive
graphical design environment.

11

http://www.workflowpatterns.com

12 CHAPTER 1. INTRODUCTION

• YAWL’s architecture is Service-oriented and hence one can replace existing components with one’s
own or extend the environment with newly developed components.

• The YAWL environments supports the automated generation of forms. This is particularly useful for
rapid prototyping purposes.

• Tasks in YAWL can be mapped to human participants, Web Services, external applications or to Java
classes.

• Through the C-YAWL approach a theory has been developed for the configuration of YAWL models.
For more information on process configuration visit http://www.processconfiguration.com.

• Simulation support is offered through a link with the ProM (http://www.processmining.org)
environment. Through this environment it is also possible to conduct post-execution analysis of YAWL
processes (e.g. in order to identify bottlenecks).

1.2 Obtaining the Latest Version of YAWL

As new versions of the YAWL Environment are released to the public, they will be available for download at
the YAWL Github repository (https://github.com/yawlfoundation/yawl/releases). From this
site it is also possible to access the source code of all components for development purposes. The latest
release may also be downloaded directly from the YAWL website https://yawlfoundation.github.
io/

1.3 The YAWL Foundation

The YAWL Foundation is a non-profit organisation that acts as custodian of all intellectual property (IP)
related to YAWL and its support environment. For up-to-the-minute information on any aspect of the YAWL
Initiative, visit the YAWL website.

1.4 Documentation

Apart from this user manual, there is a technical manual on YAWL and a number of case studies. These
studies provide detailed examples that you may wish to consult in order to obtain a deeper understanding
of the application of YAWL.

This manual does not really cover the control-flow concepts of YAWL in detail. One reason for this is that
there are quite a few papers out there that do provide this information. We refer the reader to e.g. [5]
for a justification of the extensions of Petri nets introduced for YAWL on the basis of the original control-
flow patterns. The main paper on YAWL, from a language point of view, is [6]. In this paper you find
a formalisation of the control-flow concepts of YAWL. More recently, a CPN formalisation of newYAWL
(control-flow, data and resource perspectives) was presented in [21]. For a formalisation of the OR-join,
a complex synchronisation concept in YAWL, we refer to [25]. This definition supersedes the definition
provided in [6].

As mentioned above, YAWL extends Petri nets. There are a number of general introductions to Petri nets in
the literature. We refer the interested reader to [15, 14].

Wil van der Aalst has written much about the application of Petri nets to workflow, see e.g. [1]. The subclass
of Petri nets introduced by him, Workflow-nets, is a predecessor of YAWL. The textbook that he wrote
together with Kees van Hee is highly recommended reading [4].

A recent textbook on Business Process Management (BPM), which covers the original control-flow patterns
and also YAWL, was written by Mathias Weske [23]. This textbook also covers other approaches, such as
the modelling standard BPMN (note that the BPMN2YAWL tool can convert these specifications to YAWL).

http://www.processconfiguration.com
http://www.processmining.org
https://github.com/yawlfoundation/yawl/releases
https://yawlfoundation.github.io/
https://yawlfoundation.github.io/

1.4. DOCUMENTATION 13

On the YAWL web site it can be seen how the original control-flow patterns can be realised in YAWL (follow
the link on Resources and then click ‘patterns’). For control-flow patterns in newYAWL the reader can
consult appendix A.1 of Nick Russell’s PhD thesis [21].

If you would like to know more about how verification of YAWL specifications really works, we refer you
to [22] and to [24]. This work forms the theoretical basis of how the verification mechanisms are realised in
the YAWL editor.

In-depth discussion of YAWL’s exception handling framework from a conceptual point of view can be found
in [21, 17] and from an implementation aspect in [7, 8]. YAWL’s worklet approach to dealing with on-the-fly
changes to workflows is discussed in [7, 9].

YAWL has a close link to the Process Mining environment ProM [3], http://www.processmining.org.
This link is for example exploited in [16] to provide simulation support for YAWL. There exists support for
exporting YAWL logs to ProM which can subsequently be analysed by one of the many mining plug-ins
available in this environment.

Alternative ways of presenting work lists have been addressed in [10]. In this framework users can choose
a map (not just a geographical map, but also e.g. a timeline or a YAWL specification) and work items can be
positioned on this map and be shown in a colour that reflects their level of urgency (a context-specific notion
which can be defined for the user). It is expected that this work becomes part of the YAWL distribution in
the near future.

Finally, a textbook on YAWL, called Modern Business Process Automation: YAWL and its Support Environment
has been published by Springer (2010; ISBN: 978-3-642-03120-5).

http://www.processmining.org

14 CHAPTER 1. INTRODUCTION

Chapter 2

Installation

The YAWL System (also referred to as the YAWL Environment) comprises a number of web servlets and
a java-based Editor desktop application. It requires a Servlet Container to host the servlets and a back-end
database system for process data storage and archiving. Individual YAWL components may be installed
manually (see Section 2.4), but there are also a number of automatic YAWL installation packages that install
all the required components and allow you to be up and running with YAWL quickly and easily:

• YAWL has installers available for Windows, Linux and Mac OSX platforms. You should choose an
installer if YAWL is to be used within a single platform environment (i.e. all components are installed
on the same machine). A YAWL installer is also the right choice if you intend to learn about or to ex-
periment with YAWL. The resulting pre-configured installation has the complete YAWL functionality
and contains the same YAWL components as a YAWL Enterprise installation.

• YAWL Enterprise is how YAWL is described when installed manually on production server(s). Re-
quired third-party components, such as Apache Tomcat and PostgreSQL, are installed separately, pos-
sibly on different platforms, so that YAWL may be used as a long-running, distributed server for
production purposes. See Section 2.4 for instructions on how to install an enterprise version of YAWL
for multi-user production environments.

The complete YAWL environment is installed whichever installer is chosen.

Official and stable versions of the YAWL installation files are found on the Github YAWL project repository
page: https://github.com/yawlfoundation/yawl/releases and on the YAWL website (https:
//yawlfoundation.github.io).

2.1 Requirements

All installers, and YAWL itself, require the Java SE Runtime Environment (JRE), version 11 or greater
(https://java.com/en/download/).

YAWL 5.2 has been successfully run on the following operating systems:

• Windows: all versions;

• Linux: Ubuntu (9.10 and later), sidux, Debian (Etch), and other variants;

• Mac OS X: 10.4 and later.

15

https://github.com/yawlfoundation/yawl/releases
https://yawlfoundation.github.io
https://yawlfoundation.github.io
https://java.com/en/download/

16 CHAPTER 2. INSTALLATION

2.2 Installing YAWL

The release package provides an installer for each of the operating systems Windows, Linux and Mac OSX.
Their filenames are similar to those shown in Table 2.1.

Windows YAWL-5.2-windows-installer.exe
Linux YAWL-5.2-linux-installer.bin
MacOSX YAWL-5.2-osx-installer.app.zip

Table 2.1: YAWL has automated installers for three different operating systems

NOTE: A zipped package of YAWL that can be unzipped directly to any folder on any operating system
and run from there can be found on the YAWL releases page; it will have a name similar to YAWL-5.2-
NoInstaller.zip

Preparation YAWL can be installed from an ordinary user account without administration rights as long
as Java version 11 or greater is installed on the system.

To start the installation, simply double-click on the installation file.

The installation file needs to have read and executable permissions. Those can be assigned by right
clicking the file, selecting Properties and setting the appropriate permissions. Alternatively the following
shell command can be applied:

user@host:/tmp$ chmod 755 YAWL-5.2-linux-installer.bin

Afterwards, start the installation by double-clicking on the downloaded file or by invoking it from the
command line:

user@host:/tmp$./YAWL-5.2-linux-installer.bin

Installation Start You will first be greeted by a Welcome screen. Pressing Next will take you to the License
Agreement page, shown in figure 2.1. You need to accept the agreement to continue the installation.

The next step is to select the installation directory (figure 2.2). The default location is your home directory.
The installer will inform you if you’re allowed to install YAWL in the selected folder. In case of Windows
or Linux, folders like C:\Program Files\ or /usr/local/ are only writeable by users with administrative rights.
Install YAWL into your home directory if you don’t have administrative rights (this is particularly important
for users of Windows 7 and later).

After clicking Next, the installer will look for a valid Java installation. The dialog box in figure 2.3 will only
appear if Java has been detected on your system.

The installer will show a message then exit if no Java version greater or equal 11 is found. If this happens,
ensure the latest Java runtime1 is installed before re-running the YAWL installer.

The YAWL installer checks the usual installation paths, like /usr/ or /usr/local/. If you installed Java on
your system but the YAWL installer is not able to find it, create the following link:

user@host:$ ln -s /path/to/your/java/base/dir /usr/local/java

Keep in mind that you need administration rights to generate the link. Afterwards, start the YAWL installa-
tion again.

1https://java.com/en/download/

https://java.com/en/download/

2.2. INSTALLING YAWL 17

Figure 2.1: License Agreement

Figure 2.2: Select Installation Directory

You are now ready to proceed with the installation. When the installation completes, you will see the
Installation Completed page. If you found a problem and could not complete the installation, please post the
problem to the YAWL Foundation forum2.

Database YAWL comes preconfigured with a H23 database.

2http://yaug.org/
3https://www.h2database.com

http://yaug.org/
https://www.h2database.com

18 CHAPTER 2. INSTALLATION

Figure 2.3: Select Java Version

2.3 YAWL Control Panel

The Control Panel is a java desktop application that provides easy access to starting, stopping and updating
the installed YAWL environment, and to start the editor, view this manual and so on. On Windows, it can be
accessed via the Start Menu (in the YAWL-5.2 folder), or for all systems it can be found as YawlControlPanel-
5.2.jar in the ‘controlpanel’ sub-folder of the YAWL-5.2 installation folder.

Figure 2.4: YAWL Control Panel

The Control Panel consists of a tool bar, a a status panel that reflects the current status of the YAWL Engine
(i.e. Starting, Running, Stopping, Stopped), and an Output Log / Installed Components panel. The toobar

2.3. YAWL CONTROL PANEL 19

buttons, as shown in Figure 2.4, are (left-to-right):

• Start Click to start the YAWL environment. Note that it may take 15 to 60 seconds for the start process
to complete. When YAWL is starting or running, this button will be disabled.

• Stop Click to stop the YAWL environment. When YAWL is stopping or stopped, this button will be
disabled. When starting and stopping, the status panel will update to show the current status.

• Logon Click the Logon button to open the YAWL logon page in your default browser. Note that this
button is enabled only while YAWL is running.

• Editor Click the Editor button to start the YAWL process editor (see Chapter 4).

• Updates Click the Updates button to check for updates to existing components, or to install/uninstall
components (see the Updates section below).

• Preferences Click the Preferences button to display the Preferences dialog (Figure 2.5).

• Information Click to open the user manual in your default browser.

• Examples Click to open a page in the browser where you can download the various example specifi-
cations and other files described in this manual.

• About Click this button to show the ’about’ box for the control panel app. Click anywhere on the box
displayed to close it.

The Output Log panel shows the real time output of the YAWL execution log.

The Control Panel can be closed at any time by simply closing its window. Closing the Control Panel will not
affect the current YAWL execution status, unless the ‘Stop YAWL Engine when Control Panel exits’ option
is selected in the Preferences dialog.

2.3.1 Preferences

Figure 2.5: Control Panel Preferences dialog

The four actions in the Preferences dialog are self explanatory and may be chosen as desired.

20 CHAPTER 2. INSTALLATION

The Tomcat Port setting in most cases need not be changed. It is provided for those cases where you may
already have an application running on port 8080, in which case you need to set YAWL to run on another
port. Note that the port value can only be changed when the YAWL environment is stopped.

Warning: Do not attempt to alter the port for YAWL via any other method, as a number of configuration
files are required to be updated as a result of the port change.

2.3.2 Updates

The Components Panel (Figure 2.6) allows you to update, install and uninstall YAWL components. It is
displayed when the Components tab is clicked, or the Updates button is clicked, or when you have selected
the ‘Check for Updates when Control Panel starts’ option in the Preferences dialog and there are updates
available when you start the Control Panel.

Figure 2.6: Components Panel

The Components Panel lists all available YAWL components, and for each displays a short description4, its
current build version (as installed) and the latest available build version (if the Updates button is clicked or
the ’Check for Updates’ preference is selected). The column on the right will show a tick for each component
currently installed.

4see Section 2.4.3 for more details of the purpose and use of each component

2.3. YAWL CONTROL PANEL 21

• For each available update, that is where there is a currently installed component with a build version
less than the latest available version, its row be coloured blue (e.g. ‘controlpanel’ in Figure 2.6).

• to install a component not currently installed, click on its (Un)Install checkbox to select it. Its row will
be coloured green to denote the addition (e.g. ‘mailService’ in Figure 2.6).

• to uninstall a component that is currently installed, click on its (Un)Install checkbox to unselect it. Its
row will be coloured red to denote the deletion (e.g. ‘yawlWSInvoker’ in Figure 2.6).

• the first four rows (i.e. ‘controlpanel’, ‘yawl’, ‘resourceService’ and ‘documentStore’) are mandatory
components that cannot be uninstalled (but may be updated).

• Absolutely no information is sent from your YAWL installation to the updates server. Rather, the Con-
trol Panel downloads a file containing the latest build data for all YAWL components, then compares
that to what is currently installed.

When the Update button is clicked in the Updates dialog, all components denoted blue will be updated, all
denoted green will be installed, and all denoted red will be uninstalled, via this process:

1. Files for updates and installs will be downloaded. An error message will appear if the download
server is unavailable. You may try again later.

2. Once the file downloading has completed, each file is verified for correctness. An error message will
appear if any file fails verification. You may try again later.

3. Once verification has completed successfully for each file downloaded (if any), the Engine will be
stopped if it is currently running, so that the updates, installs and uninstalls can be applied.

4. The selected changes will be applied.

5. The Engine will be (re)started.

6. Once the restart has completed, the Components Panel will be refreshed to show the results of the
process.

Finally, if the Control Panel itself has been updated, it will automatically restart to the latest version.

2.3.3 Command Line Interface

The YAWL Control Panel can also be operated in ‘headless’ mode, via the command line. This means that
you can use the Control Panel to manage a YAWL installation remotely.

The syntax is (from the controlpanel directory):

java -jar YawlControlPanel-5.jar -option

where “-option” is one of:

• -start Start the YAWL engine

• -stop Stop the YAWL engine

• -status Check whether the YAWL engine is running or stopped

• -update Update all installed components (with pending updates)

• -versions List installed and available components and their versions

• -add [component] Add the named component (and perform updates)

• -remove [component] Remove the named component

22 CHAPTER 2. INSTALLATION

2.4 Manual Installation (YAWL Enterprise)

If you already have installed a servlet container, such as Apache Tomcat (version 9 or greater) and/or a
preferred database, such as PostgreSQL, MySQL or Oracle (version 8.1 or greater), you may prefer to install
YAWL components manually. Manual installation is also required if you want a multi-user, multi-platform,
production-level installation of YAWL. This section details how to install YAWL 5.2 on a component-by-
component basis.

2.4.1 Installing Tomcat

YAWL mainly consists of a number of servlets, and so needs a servlet container installed to host them. We
recommend Apache Tomcat be used – it is free, stable and fully tested as a YAWL host over a number of
years. YAWL requires Tomcat version 9 or later.

The first step is to download the latest Tomcat version from https://tomcat.apache.org. The simplest
way to install Tomcat in a Windows environment is to use the purpose built Windows installer provided.

For installation on Mac OSX:

1. Download the latest Tomcat binary from https://tomcat.apache.org.

2. Unpack the downloaded file to a destination directory of your choice.

3. If necessary, change the owner of the tomcat hierarchy to your user:

sudo chown -R <your_username> <your root Tomcat dir>

4. Make the Tomcat scripts executable:

sudo chmod +x <your root Tomcat dir>/bin/*.sh

Linux installation is similarly straightforward. A simple set of instructions (for ubuntu) can be found at
https://www.howtogeek.com/howto/linux/installing-tomcat-6-on-ubuntu/

In all cases, an environment variable called “CATALINA HOME” needs to be added, which points to the
tomcat install path.

Once Tomcat is installed, two small configuration changes are required to files found in the <your tomcat dir>
/conf directory:

1. context.xml: Locate the commented line containing <Manager pathname=“” /> and uncomment it.

2. server.xml: Locate the entry that begins <Connector port=“8080” protocol=“HTTP/1.1” and modify it so
that it looks like this (i.e. the fifth attribute, URIEncoding=“UTF-8”, has been added):

<Connector port="8080"
protocol="HTTP/1.1"
connectionTimeout="20000"
redirectPort="8443"
URIEncoding="UTF-8"/>

2.4.2 Installing PostgreSQL

As a default, YAWL Enterprise is configured to use PostgreSQL for database support, and this section de-
scribes how to manually install and configure PostgreSQL for YAWL (however, it is easy to configure YAWL
for other database back-ends – see Section 2.4.4 for details).

Download the latest version of PostgreSQL from https://www.postgresql.org/download/ – there
is a one-click installer available for each operating system. The following is a walkthrough for a Windows

https://tomcat.apache.org
https://tomcat.apache.org
https://www.howtogeek.com/howto/linux/installing-tomcat-6-on-ubuntu/
https://www.postgresql.org/download/

2.4. MANUAL INSTALLATION (YAWL ENTERPRISE) 23

installation, but it is a similar process for other platforms. Except where otherwise mentioned, simply accept
the default setting for each setup screen.

For the Service Configuration screen, choose the Install as a Service option (see Figure 2.7). Leave the account
name as ‘postgres’ and enter any password of at least 6 characters. This will be the account the PostgreSQL
service uses to run and allow connections to the database. Note: The Install as a Service option is only
available on Windows systems.

Figure 2.7: Choose Install as a Service and enter any password

On the next screen, Initialise Database Cluster (Figure 2.8), leave all values as they are, but enter ‘yawl’ (no
quotes, all lower case) as the password. This is the user account that YAWL uses to connect to the database
(but see Section 2.4.4 for details on how to modify the password YAWL uses). Leave the settings for all other
screens at their defaults and click through to completion.

Next, run the administration tool pgAdmin5, which was installed along with the PostgreSQL installation. In
the Object Browser panel on the left (cf. Figure 2.9), double-click on the Postgres server, and, when prompted,
enter ‘yawl’ as the password (you should only be asked for this password the first time you connect). Then,
right-click on Databases (under Postgres) and choose New Database from the popup menu. In the next dialog,
enter ‘yawl’ as the database name, leave all other fields as they are, and click OK.

That completes the installation of PostgreSQL and the admin tool pgAdmin, and the creation of the YAWL
database. When YAWL is started, it will automatically create the required database tables as part of its
startup process.

2.4.3 Installing YAWL Services

All the necessary YAWL files can be downloaded from the YAWL Engine download page on Github (https:
//github.com/yawlfoundation/yawl/releases). The latest release list will contain these files:

• YAWL CoreServices 5.2.zip: The core set of YAWL services, comprising the core Engine, and the
Resource, Worklet, Web Service Invoker, Mail, and DocumentStore Services.

5https://www.pgadmin.org

https://github.com/yawlfoundation/yawl/releases
https://github.com/yawlfoundation/yawl/releases
https://www.pgadmin.org

24 CHAPTER 2. INSTALLATION

Figure 2.8: Keep postgres as the Superuser name, and enter yawl as the password

Figure 2.9: The pgAdmin tool, Object Browser panel on the left

• YAWL OptionalWebServices 5.2.zip: Extra services that you may find useful for particular purposes.

• YAWL LibraryJars 5.2.zip: Two library jars that contain the YAWL class files only (i.e. without any
third party libraries) and so can be used to embed references to the YAWL classes when developing
applications. The file yawl-lib-5.2.jar contains every Engine and Service class file in the YAWL envi-
ronment, while the file YResourceServiceClient.jar contains the minimum set of YAWL classes required

2.4. MANUAL INSTALLATION (YAWL ENTERPRISE) 25

when developing applications using the Resource Service’s APIs, or when developing custom forms
for your processes (see Chapter 4, Section 4.15).

• YAWL Standalone 5.2.jar A basic, standalone desktop version of the Engine.

• source.zip The source code for the environment.

Download the CoreWebServices file (and, if any of the optional services are required, the OptionalWebServices
file). Unzip the contents of the file to <your tomcat dir> /webapps directory. When Tomcat is (re)started, it
will automatically unpack each war file into its own directory under webapps (cf. Figure 2.10). There are six
core web services:

1. yawl.war: the core workflow engine.

2. yawlUI.war: contains the default worklist handler and administration pages; generates dynamic
forms.

3. resourceService.war: handles the allocation of tasks to resources; manages codelets; manages organi-
sational data.

4. workletService.war: handles dynamic flexibility and exception handling.

5. yawlWSInvoker.war: allocates tasks to synchronous web services.

6. mailService.war: sends emails base on task data to specified recipients.

7. documentStore.war: manages binary files passed as data values between nets and tasks during the
execution of a case .

The Resource Service is described in detail in Chapter 6. The Worklet Service is described in detail in
Chapter 8. The WS Invoker, DocumentStore and Mail Services are described in Chapter 9. The Monitor
Service is described in Chapter 7.

There are two optional web services:

1. digitalSignature.war: authenticates the information provided on a form using a digital signature via
X.509 certificates and private keys.

2. schedulingService.war: allows resources to be scheduled for, and allocated to, cases.

While all the core web services are pre-registered in the Engine when it first starts, the optional services
are not, and so require manual registration after installation before they can be used. Please see Chapter 6,
Section 6.4.3 for more details.

Tip: If a .war file is to be copied into the webapps directory to replace a file of the same name, it is advisable
to first shutdown Tomcat, and delete the unpacked directory for that war, before copying in the new war
file. On restart, the new war’s contents will be unpacked. If the old unpacked directory is not removed, on
restart the new war file will not unpack. If Tomcat is running when the new war is copied to the webapps
directory, it will unpack and replace the old directory, but, depending on how it has been configured, may
run out of resources while doing so, resulting in an OutOfMemoryError (see Section 2.4.5).

2.4.4 Configuring YAWL for other Databases

YAWL uses Hibernate (https://hibernate.org) as a database framework, which provides a trans-
parency layer between YAWL and the back-end database used to support it. While the Enterprise ver-
sion of YAWL is pre-configured to use PostgreSQL, it is a relatively simple process to reconfigure for other
databases. Besides PostgreSQL, YAWL has been successfully tested with MySQL, HypersonicSQL, Oracle,
Microsoft SQL Server (MSSQL), Apache Derby and H2 (used by YAWL4Study) Other database platforms are

https://hibernate.org

26 CHAPTER 2. INSTALLATION

Figure 2.10: YAWL Core Services deployed in /webapps directory (OSX Example)

known to work well with Hibernate (see https://github.com/hibernate/hibernate-orm/blob/
main/dialects.adoc for a complete list) and so should have no trouble working with YAWL, too 6.

Each YAWL service that communicates with the database (i.e. the Engine and the Resource, Worklet, Doc-
umentStore, and Scheduling Services) has a configuration file called hibernate.properties located in its WEB-
INF/classes directory. The properties file contains a ‘Platforms’ section with default settings for a number
of different database platforms – all except one (PostgreSQL) commented out (see Listing 2.1 for an excerpt
of the properties file). To configure for a different database platform, comment out the currently enabled
platform, then uncomment the platform of choice, ensuring the username and password values match the
target database authorisations.

Remember to change the hibernate.properties file for each of the webapps mentioned above.

2.4.5 Troubleshooting Memory Problems

By default, Tomcat is configured to use the default memory parameters of the installed Java Virtual Machine
(JVM). While this is sufficient for individual users, or even small groups, when larger numbers of users
access YAWL concurrently, you may experience an OutOfMemoryException and Tomcat will freeze. If you
do experience this problem, the solution is to configure Tomcat to have a larger amount of memory allocated
to it when it starts.

The default memory allocation is 64 megabytes. Depending on the RAM you have available, a setting of
between 256 and 512 megabytes is usually sufficient in the majority of cases.

To set the Tomcat memory allocation in a Windows environment:

1. In a text editor, create a new file and enter the line: set JAVA OPTS=-server -Xmx256m

2. Save the file as /your tomcat dir/bin/setenv.bat

To set the Tomcat memory allocation in a *nix or OSX environment:

1. In a text editor, create a new file and enter the line: export JAVA OPTS="-server -Xmx256m"

6Please pass on your experiences using YAWL with database platforms, other than those listed, on the YAWL forum.

https://github.com/hibernate/hibernate-orm/blob/main/dialects.adoc
https://github.com/hibernate/hibernate-orm/blob/main/dialects.adoc

2.4. MANUAL INSTALLATION (YAWL ENTERPRISE) 27

HypersonicSQL

#hibernate.dialect org.hibernate.dialect.HSQLDialect
#hibernate.connection.driver_class org.hsqldb.jdbcDriver
#hibernate.connection.username sa
#hibernate.connection.password
#hibernate.connection.url jdbc:hsqldb:file:./webapps/yawl/yawl

PostgreSQL

hibernate.dialect org.hibernate.dialect.PostgreSQLDialect
hibernate.connection.driver_class org.postgresql.Driver
hibernate.connection.url jdbc:postgresql:yawl
hibernate.connection.username postgres
hibernate.connection.password yawl
#hibernate.query.substitutions yes ’Y’, no ’N’

DB2

#hibernate.dialect org.hibernate.dialect.DB2Dialect
#hibernate.connection.driver_class COM.ibm.db2.jdbc.app.DB2Driver
#hibernate.connection.url jdbc:db2:test
#hibernate.connection.username db2
#hibernate.connection.password db2

...

MySQL

##hibernate.connection.driver_class org.gjt.mm.mysql.Driver
#hibernate.dialect org.hibernate.dialect.MySQLDialect
#hibernate.connection.driver_class com.mysql.jdbc.Driver
#hibernate.connection.url jdbc:mysql:///yawl
#hibernate.connection.username root
#hibernate.connection.password

Oracle

#hibernate.dialect org.hibernate.dialect.Oracle9Dialect
#hibernate.dialect org.hibernate.dialect.OracleDialect
#hibernate.connection.driver_class oracle.jdbc.driver.OracleDriver
#hibernate.connection.username ora
#hibernate.connection.password ora
#hibernate.connection.url jdbc:oracle:thin:@localhost:1521:test

Listing 2.1: hibernate.properties file (excerpt) with PostgreSQL enabled

2. Save the file as /your tomcat dir/bin/setenv.sh

These instructions use 256m as an example; please replace it as necessary with the actual amount of memory
you’d like to have allocated to Tomcat when it starts.

28 CHAPTER 2. INSTALLATION

Chapter 3

Getting Started with YAWL

3.1 Introduction

Nowadays, organisations are challenged to continuously improve their efficiency and to respond quickly
to changes in their environment, such as new business opportunities, competition threats, and evolving
customer expectations. It is not surprising then that organisations are paying more attention to capturing,
analysing and improving their work practices in a systematic manner. The methods, techniques and tools
to do this are collectively known as Business Process Management (BPM).

For IT departments, BPM provides an opportunity to align IT systems with business requirements, and to re-
organise existing application infrastructure to better support the day-to-day operations of the organisation.
BPM initiatives often translate into requirements for IT systems. Here is where workflow technology comes
into play. Business process models produced by business experts are taken as a starting point by software
architects to produce a blueprint for a software application that co-ordinates, monitors and controls some
or all of the tasks that make up these business processes. Such software applications are called workflows.
An example of a business process is an order-to-cash process: one that goes from the moment a purchase
order for a product or service is received by an organisation to the moment the customer pays for the
products, including aspects such as invoicing and shipment. After capturing this process from beginning to
end, an organisation may choose to add further details about the people, legacy applications, messages and
documents involved, and to deploy a workflow application to co-ordinate this process.

You can build a workflow application using general-purpose software programming platforms, e.g. as a
bunch of Web applications, Enterprise Java Beans and legacy applications connected together... but this
defeats the purpose of aligning the models produced by business people with the resulting IT systems. This
is why one should consider an alternative approach: to develop workflow applications on top of a dedicated
workflow management system.1

Many years ago, workflow was a bit of a dark art, practised by deep-pocketed companies that were able
to afford expensive workflow management systems and highly specialised consultants. Today, workflow
technology is widely available and its benefits and pitfalls are more widely understood. A word of warning
though: while workflow doesn’t have to belong to arcane masters of lore, it’s also not something to trivialise.
If a workflow application is not aligned with the business it’s been deployed in, it can be worse than a
manual, paper-based bureaucracy. It is therefore important that both business and IT stakeholders follow a
sound BPM methodology before attempting to deploy a workflow application.

But assuming you’ve decided on a workflow solution, it’s time to make a choice. You can still choose
to pay for a workflow system, or you can get one for free. If you’re for the latter, maybe YAWL is for
you. YAWL, which stands for Yet Another Workflow Language, is a fully open-sourced workflow system (or

1The term business process management system (BPMS) is often used to refer to something similar to a workflow management
system. The difference is that a BPMS supposedly offers richer functionality for analysing business processes, while workflow systems
traditionally focused on the co-ordination of tasks. However, the gap between these two is narrowing, and it is difficult to differentiate
modern workflow management systems and BPMSs.

29

30 CHAPTER 3. GETTING STARTED WITH YAWL

“business process management system” if you prefer). Its tongue-in-cheek name belies the fact that YAWL
is rather unique. It’s based on a very rich workflow definition language, capable of capturing all sorts of
flow dependencies between tasks. It has open interfaces based on Web standards, which enable developers
to plug-in existing applications and to extend and customise the system in many ways. It also provides
a graphical editor with built-in verification functionality, which helps solution architects and developers
to capture workflow models and to automatically detect subtle but potentially nasty errors early-on in the
piece. Finally, YAWL is arguably the most mature open-source workflow management system around. From
its beginnings as an academic prototype, YAWL has evolved into an enterprise-grade workflow engine
thanks to contributions from the YAWL Foundation members, and from the organisations and individuals
who have used it. This demonstrated commitment from its users and community of developers also ensures
the continuity of the system.

If you think YAWL might be for you, you may be wondering how to learn more. This chapter provides a
gentle introduction to the YAWL workflow system. The aim of the chapter is to help people to get YAWL
up and running with a minimum of fuss. The chapter doesn’t cover all possible features and components
of YAWL. Instead, it focuses on some essential aspects that will help you to become familiar enough with
YAWL that you feel comfortable designing and executing at least simple workflows. For more information,
you may refer to other chapters in this manual, the technical manual or the various academic papers and
case studies available at the YAWL web site.2.

3.2 Terminology

Before jumping in and getting our hands dirty with a real workflow example, let’s briefly agree on some
basic terms.

Business Process: A set of interdependent activities that need to be performed in response to a business
event, to achieve a business objective. Typical examples of business processes are “complaint han-
dling”, “order-to-cash”, or “credit card approval”.

Workflow Application: A software application that co-ordinates the tasks, data and resources that compose
a business process, in whole or part. Sometimes the term “workflow” is used as a shorthand for
“workflow application”.

Workflow Specification: (Also known as Workflow Model) A description of a business process to the level
of detail required for its deployment into a workflow engine. A workflow specification defines which
tasks should be performed, under which conditions and in which order, which data, documents and
resources are required in performing each task, etc.

Workflow System: A system that can be used to develop and to run a workflow application. A workflow
system usually includes a process editor to support the design of workflow models, a workflow engine to
support the execution of workflow models, and at least one worklist handler.

Workflow Engine: The runtime component of a workflow system responsible for determining which tasks
need to be performed and when, for maintaining execution logs, and for delegating the performance
of tasks to software applications/services or to a worklist handler.

Case: (Also known as Workflow Instance) A specific instantiation of a workflow model as a result of an event.
For example, an order management workflow is instantiated every time a new order arrives. Each of
these orders leads to a different case.

Task: (Also known as Activity) A description of a unit of work that may need to be performed as part of a
workflow. Workflow models are composed of tasks. Generally, a task may be either manually carried
out by a person or automatically by a software application.

2http://yawlfoundation.org

http://yawlfoundation.org

3.3. BUILDING A SIMPLE WORKFLOW EXAMPLE 31

Work item: (Also known as Task Instance) A particular instance of a task that needs to be performed as part
of a given workflow instance.

Worklist: A list of work items.

Worklist Handler: (Also known as a Task Management Service) A software component that manages work
items issued by a workflow engine and that assigns, prioritises and presents these work items to
human participants according to policies that may be configured in the workflow model and/or at
runtime.

3.3 Building a Simple Workflow Example

Designing a workflow typically begins with a process modelling exercise. A process modelling expert sits
down with a domain expert, and picks their brains on “how things are done”. The knowledge gained on
the sequencing and nature of the work done is then transformed into an executable workflow. Let’s take a
look at an example transcript between a process modelling expert, Processa Maree Experta, and her cousin,
Domainic Experta, who runs the credit application department of a company called Loans-R-Us.

Processa: So, how does a credit application begin?

Domainic: Well, an application arrives in our office. Once we receive it, we validate the claim.

Processa: What happens then?

Domainic: We determine what credit requirements there are for the application, then we seek a credit report for the
applicant.

Processa: So the credit report is requested after the credit requirements are determined?

Domainic: Mostly. Sometimes we request the credit report first. Actually, the order in which we do them doesn’t
really matter.

Processa: Ah, so both tasks could be done at the same time?

Domainic: Yes, I guess they could.

Processa: Then what happens?

Domainic: Once we have both the credit report and credit requirements, we can tell whether we need to do a large
credit approval, or a small approval. Only senior staff here are allowed to approve large credit applications.

Processa: So, what makes a credit application large?

Domainic: If the application is for $5, 000 or more, it’s considered large. Any lesser amount is considered a small
application, and can be done by anybody in our department.

Processa takes this transcript, dumps it on your desk and tells you to implement a workflow to match.
What’s more, she wants you to do it with YAWL3.

In a nutshell, a workflow specification in YAWL describes what work needs to be done, when and by whom.
Each YAWL specification is composed of one or more YAWL nets: exactly one starting net (also known as
the root or parent or top-level net) and zero or more sub-nets. In this tutorial, we’ll keep things simple and
we will only consider the case of a YAWL specification composed of one net (the starting net). A net has
two mandatory elements: an input condition which acts as the starting point (graphically represented like
this:) and an output condition which signals the end (the symbol). Figure 3.1 depicts the YAWL Editor

3This chapter is more an overview of YAWL than an examination of its tool support. The assumed knowledge at this point is that
you have installed and can begin using the YAWL toolset by following the instructions provided in Chapter 2.

32 CHAPTER 3. GETTING STARTED WITH YAWL

with a brand new specification open and with the specification’s starting net visible. Don’t worry too much
at this stage about the various components of the Editor – it is described in detail in Chapter 4.

Figure 3.1: A New Specification and its Starting Net

It’s time to start modelling the work to be done. Typical workflow specifications in YAWL will make signif-
icant use of atomic tasks. An atomic task (represented in YAWL as a square) models a stand-alone piece of
work that is either manual or automatic, and it’s here that workflow designers starts earning their money.
Just how much work should a single atomic task represent? The answer is not always obvious.

Looking again at Processa’s transcript, we decide that an initial atomic task is needed for receipting and
validating a claim. After that, two additional pieces of work need to be done, but in no particular order.
We’ll add an atomic task each for determining credit requirements, and seeking a credit report. The next
step requires that both credit requirements are determined, and that a credit report be ready. We need an
extra task to run only once they are finished which will decide, based on the application amount, whether
we then send the application on for a large or a small approval process. We expect large approvals and small
approvals to have differing work requirements, so we’ll model each type of approval as a separate task.

In all, we’ve identified six distinct pieces of work. Select the Atomic Task tool on the Palette at the top left of
the Editor, then place six atomic tasks onto the starting net and give each a meaningful label. You should
have the skeleton of a workflow that looks something like figure 3.2.

We’re now ready to begin describing how the tasks in our starting net are to be ordered in their execution
(known as its control-flow). The transfer of work between two tasks is done through a “flow”. Flows are
depicted within YAWL as unidirectional arrows. For a YAWL specification to be valid, every task must be
tied into a net via flows that can be traced back to the net’s input condition, and which will eventually lead
to the net’s output condition.

We’ll need a flow from the input condition to the Receive and Validate Application task, then two flows from
that task to the tasks Determine Credit Requirements and Obtain Credit Report respectively. From each of these,
a flow must go to the task Choose Approval Process. From this task, we need a flow going to the tasks Large
Credit Approval and Small Credit Approval respectively. From these last two tasks, we need flows to the final
output condition.

By default a YAWL task can only have one incoming flow and one outgoing flow. When we need more
incoming flows to a task, we must unambiguously state how the task should handle its inflows: should it

3.3. BUILDING A SIMPLE WORKFLOW EXAMPLE 33

Figure 3.2: Atomic Tasks Added to the Starting Net

wait for all of them? Should it wait for only one of them? Or something in the middle? This disambiguation
is done by ‘decorating’ the task with a join. A similar situation holds when a task has multiple outgoing
flows. In this case, we need to decorate the task with a split.
Figure 3.3 lists the available joins and splits that can be used on tasks, along with a brief description of the
behaviour to expect from tasks when using them.

Returning to our example, the tasks Receive and Validate Application and Choose Approval Process both require
decoration. The first of these two tasks requires an AND-Split because the subsequent tasks can be done in
parallel. The second task should have an AND-join, so that it waits for both preceding tasks to complete be-
fore continuing, and XOR-split decorator to signal that either of the subsequent tasks should be performed,
but not both. With these splits and joins in place, we can now connect the remaining tasks as depicted in
figure 3.4.

Now that we have finished specifying the control-flow perspective of our process, we need to say how infor-
mation passes from YAWL to its participants (e.g. workers and external applications) and how information
comes back into YAWL once they’re finished. This is done by attaching a decomposition to each task. Every
atomic task that requires work to be performed needs to have a decomposition. A decomposition may be
described as a contract between the task and its ‘environment’, describing the data that will be assigned and
updated when the task is performed and the so-called YAWL Custom Service (a web service designed for the
YAWL environment) that will be responsible for the task’s execution. Note that the YAWL Engine does not
directly perform the work of the task – responsibility is always deferred to the designated YAWL Service. It
is possible to define an atomic task without assigning it a decomposition: they represent so-called “empty”
steps and are generally used to capture a point in the specification where there is a need to synchronise
certain tasks and start a new set of tasks.

In our working example, all tasks except one require a decomposition. It is enough at this stage to simply
create a decomposition per task. To do this, you need to right-click on each task and select the “Set Task
Decomposition” option. For this example, we’ll choose the Default Engine Worklist (actually the worklist
handler built in to the Resource Service) as the “type of decomposition”. This tells YAWL that when the task
is ready to be executed, it should be displayed in the default worklist. Every instance of the task will then
appear in the worklist of human participants so they may receive data relative to the task instance, work

34 CHAPTER 3. GETTING STARTED WITH YAWL

Name: Symbol: Description:
Split Types:

XOR-Split

The XOR-Split is used to trigger only one outgoing flow. It is best
used for automatically choosing between a number of possible
exclusive alternatives once a task completes.

AND-Split

The AND-Split is used to start a number of task instances simul-
taneously. It can be viewed as a specialisation of the OR-Split,
where work will be triggered to start on all outgoing flows.

OR-Split

The OR-Split is used to trigger some, but not necessarily all outgo-
ing flows to other tasks. It is best used when we won’t know until
run-time exactly what concurrent resultant work can lead from
the completion of a task.

Join Types:

AND-Join

A task with an AND-Join will wait to receive completed work
from all of its incoming flows before beginning. It is typically used
to synchronise pre-requisite activities that must be completed be-
fore some new piece of work may begin.

XOR-Join

Once any work has completed on an incoming flow, a task with an
XOR-Join will be capable of beginning work. It is typically used to
allow new work to start so long as one of several different pieces
of earlier work have been completed.

OR-Join

The OR-Join ensures that a task waits until all incoming flows
have either finished, or will never finish. OR-Joins are “smart”:
they will only wait for something if it is necessary to wait. How-
ever, understanding models with OR-joins can be tricky and
therefore OR-joins should be used sparingly.

Figure 3.3: Supported Splits and Joins in YAWL

on that data, and finally return work results to YAWL. Another type of decomposition, which we won’t
illustrate in this tutorial, is to associate tasks with a Custom Service that can, for example, send notifications
and receive replies via SMS, or send an email, or interact with a scheduling calendar, or call an external Web
Service, and so on.

The one task in our example that does not need a decomposition is the one labelled Choose Approval Process.
This task does not need any participant interaction because the decision on whether to choose either Large
Credit Approval or Small Credit Approval can be automatically determined with data made available to the
workflow instance.

Congratulations, you now have an executable YAWL workflow specification. However, more effort is
needed with respect to data and resourcing to achieve real utility. All YAWL can currently do with this
specification is walk an unspecified user through a default path of the workflow.

3.4 Advanced Workflow Concepts

A specification capable of only walking a user through a path of a workflow is hardly going to win us any
awards in workflow automation. We still have at least two major concerns to address before our specifica-
tion becomes useful.

Firstly, we need to decide which participants should perform which tasks. This is discussed in section 3.4.1.

3.4. ADVANCED WORKFLOW CONCEPTS 35

Figure 3.4: Multiple Flows Between Tasks

Secondly, we need to figure out what data these participants need from the workflow system, what data they
need to supply the workflow system, and how the workflow system will use data to implement automated
choice between alternatives. Concerns involving workflow data are covered in section 3.4.2.

3.4.1 Modelling Resourcing Requirements

It’s time now to add detail to our YAWL specification, describing which participants should be doing partic-
ular pieces of the work specified. We’ll assume that the entire workflow is to be carried out by the “Applica-
tions Department” of Loans-R-Us. All employees within this department are capable of performing the role
Credit Officer, but a subset of these with several years of experience also perform the role Senior Credit Officer.
Anyone with the Credit Officer role is allowed to approve small credit applications. Only those performing
the role Senior Credit Officer are allowed to do the final approval of large credit applications.

We therefore have a modelling requirement where every credit officer is capable of processing a credit
application right through from its receipt to approval, so long as the application is for a small amount.
When it comes to the step of approval for large credit applications, however, only senior staff are allowed
to do this approval.

We first need to establish an organisation model within a running YAWL system where we identify those
participants from the Applications Department. For each of these, we assign the Credit Officer role. For the
subset of participants recognised as senior, we also assign an extra role of Senior Credit Officer.

To define this organisational model you need to log into the YAWL Resource Service (for now, we’ll use
the generic username admin and password YAWL). Assuming you used one of the automatic installers, this
is simply a matter of starting the engine (choose “Start Engine” from the options shown for the YAWL
program) followed by access the Resource Service in a Web Browser (choose “YAWL Control Centre” from
the options shown for the YAWL program). When you have logged in you can create new roles by choosing
the “Org Data” page from the left side menu, and new participants by choosing the “Participants” form from
the menu. This is illustrated in Figure 3.5 where the role “Senior Credit Officer” is defined and Figure 3.6
where the participant “Michael Corleone” is defined and assigned that role.

Once we have defined all the required roles and participants, we can specify resourcing requirements for

36 CHAPTER 3. GETTING STARTED WITH YAWL

Figure 3.5: Defining a Role

tasks. Back in the Editor, select a task with your mouse and then in the Properties window on the left click
on the Resourcing property (in the Task section). Clicking on the property’s button will show the Resourcing
dialog for that task. Figure 3.7) shows the dialog with the Enable System Offers interaction strategy selected,
and the Senior Credit Officer role added. This means at runtime the system will offer an instance of the task to
all participants who are members of that role, from where one of these participants can then choose to allo-
cate this instance to themselves and later choose to actually start working on it. This strategy (Offer: System,
Allocation: User, Start: User) is a common interaction strategy for tasks to be executed by participants.

Resourcing requirements can become quite complex, and the YAWL environment offers comprehensive
support for the vast majority of workflow resource patterns, but for the moment we will simply assign roles
to the various tasks and apply the System-User-User interaction strategy.

3.4.2 Modelling Data Requirements

We now need to specify what data will be passed about during the execution of an instance of this specifi-
cation. Specifically, we need to describe what data participants will need in each work item, and what data
they must return to the Engine once the work item is complete. We also need to have a way of moving data
about in the running workflow, including how we can use that data to automatically choose between flows
in a running workflow.

We stated before that task decompositions are used to define how a running workflow interacts with the
external ‘environment’. In fact, all tasks of a YAWL specification that require interaction with the external
environment need to be associated with a decomposition. Decompositions can have a number of variables
(or parameters) defined for them, describing what data must be supplied to a running net or task instance,
and what data that net or task instance will eventually deliver. Each variable has a name it may be referenced
by, a type dictating valid values it may store, a designation (or usage) indicating how that data may be used,
and a scope defining the visibility of the parameter.

Variables can belong to one of two scopes, which we’ll refer to as net scope and task scope. At runtime, every

3.4. ADVANCED WORKFLOW CONCEPTS 37

Figure 3.6: Defining a Participant

net, and every task instance with a decomposition, will have data stored as a number of variables belonging
to it. To get data from a net instance to a task instance within the net, or visa-versa, we require a data
transfer. In YAWL, all data is passed this way – from net-level to task-level when a task instance starts, and
from task-level back to net-level when the task instance completes; data cannot be directly transferred from
one task instance to another.

Valid designations for a task variable are Input, Output or both Input & Output. A task variable with an
input designation is one where we expect data to be delivered from a net-level variable to that variable at
run-time. A task variable with an output designation it expected to have its data output to a containing
net-level variables once a task instance has completed.

Just like task variables, net variables may have Input, Output or both Input & Output designations. A net-
level input variable requires its data value provided to it when the net begins. A net-level output variable
passes its value out when the net completes. In addition to these two options, net variables may have a Local
designation. They are used to store intermediate data during the execution of a process instance.

Data transfer from a net to a task is achieved via inbound mappings. An inbound mapping is a statement that
says how to transfer data from the net variable to a task input variable. Inbound mappings are evaluated
when the task starts. Conversely, once the task is completed, data is moved from the task’s scope to the net
scope by means of outbound mappings. An outbound mapping is a statement that says how to move data
from a task’s output variable to a variable in its containing net. XPath expressions4 are used to describe
inbound and outbound mappings. Accordingly, the parameters of nets and tasks in YAWL are all encoded
as XML documents.

4For more advanced workflows, XPath expressions may prove too limiting. Accordingly, YAWL allows developers to also incorpo-
rate XQuery expressions for data transfer.

38 CHAPTER 3. GETTING STARTED WITH YAWL

Figure 3.7: Specifying Resourcing Requirements

Net Instance

Input

Output

Output

Task Instance

Local

External

Service

Input

Input

Output

Output

Output

Inbound

Mappings

Outbound

Mappings

Figure 3.8: Overview of Data Transfer between a Net and Task

Figure 3.8 depicts example data transfers over the lifetime of a task instance. The task’s decomposition
defines two input variables and three output variables. When the task instance starts, values for its input
variables are populated by evaluating the input mappings for the task, which are then passed onto the

3.4. ADVANCED WORKFLOW CONCEPTS 39

task’s designated YAWL Service. The default worklist is an example of an external service, but there are
many others and advanced users are able to define and add virtually any type of service that meets their
need. The external service eventually finishes its execution, resulting in values being supplied to the output
variables of the task instance. The output mappings for this task instance are then evaluated, resulting in a
number of variables in the task’s containing net instance being updated with values from the task instance’s
output variables.

Now we have a basic understanding of data transfer in YAWL, let’s start specifying the data transfer require-
ments of our workflow specification. Since all data are passed as XML documents, all data types are defined
using XML Schema Language – there are over 40 in-built XML Schema data types, and YAWL allows de-
signers to also define their own. For our example, will limit our variables to be of either XML Schema string
or double simple types. We’ll go through our atomic task decompositions now and add variables to each
task decomposition first before we review the necessary data transfer mappings for moving data between
tasks and their containing net.

Imagine that we have finished an exercise of determining what data must be passed out of YAWL at the
starting of each task of our specification, and what data must be returned back into the system when each
task completes. We note through the exercise that even though the tasks Large Credit Approval and Small
Credit Approval are done by different parts of the organisation, they have the same data requirements, and
can both use the same decomposition (which we’ll call Credit Approval). We have a resulting variable re-
quirement per decomposition as per figure 3.9.

Decomposition Param-Name Type Designation
Receive and Validate Application ApplicationID string output

ApplicationID string inputDetermine Credit Requirements
ApplicationAmount double output

ApplicationID string inputObtain Credit Report
CreditReportRef string output

ApplicationID string input
Credit Approval CreditReportRef string input

ApplicationAmount double input

Figure 3.9: Variables Required for Task Decompositions

To give you some idea of how this might look, figure 3.10 is a screenshot of the Editor showing the de-
composition for the task Determine Credit Requirements with an input variable ApplicationID, and an output
variable AppplicationAmount. When running our specification, a participant will be offered a work-item
for an instance of this task. They will be given an application identifier, and will work outside of the sys-
tem, eventually generating an application amount for that application. Figure 3.11 shows how the default
worklist displays an instance of this task for a participant to work with.

Attaining an application amount may be as trivial as reading the number from the relevant form, or as
involved as considering the business’s current risk exposure, running calculations, and adjusting the figure
to something the insurance company is more willing to accept. The exact nature of the work to be done is
left to the participant and the business rules of the organisation, and only that data relevant to progressing
the workflow needs to be passed back into the system once they are done.

Because we can’t transfer data directly between tasks, we need a number of local variables for our starting
net. Specifically, we’ll need matching ApplicationID and ApplicationAmount local parameters at the net level,
and another called CreditReportRef that will be used by a couple of other tasks in the workflow.

With these local net variables in place, we need to specify how data is passed between the net and tasks with
XPath expressions. The XPath expressions needed are fairly straightforward, in fact the Editor creates them
automatically 5. For a task input variable, we need the expression to fetch and populate the value of this
variable with that of its corresponding net variable. For a task output variable, the matching net variable
needs an expression to retrieve the value of the task variable. Figure 3.12 shows an example of the queries
needed for the Determine Credit Requirements task. A similar exercise can then be conducted for the variables
of the remaining tasks.

5These default mappings can be modified or replaced as required by advanced users.

40 CHAPTER 3. GETTING STARTED WITH YAWL

Figure 3.10: Establishing Variables for a Task Decomposition

The only thing remaining to do with data in our specification is to deal with the XOR-Split in our model.
XOR-splits need a boolean XPath expression to be associated with each outgoing flow of the split6. These
expressions are evaluated once a task instance completes, and so can only interrogate the state of a net at
that moment. Expressions that evaluate to true indicate that a flow is to be taken. In the case of an XOR-
Split, the flows have an ordered priority specified. The first flow in order whose XPath expression evaluates
to true will be the only flow taken from a completed task.

The only task we need to consider in this regard is Choose approval process. Consulting our transcript again,
approval amounts of less than $5000 are to be routed to the Small Credit Approval task. Anything more
requires Large Credit Approval to be run. The XPath expressions needed to capture this choice are shown in
Figure 3.13. Once this is specified, we are done. We have a workflow specification that ensures the right
work and data gets routed to the right participants at the right time.

3.5 Where To From Here

You’ve now seen how we can construct a simple workflow specification for YAWL. We’ve used atomic tasks,
with various types of splits and joins, along with resourcing and data requirements to implement a simple
credit application processing workflow specification. But, we have so far only scratched the surface of what
can be achieved with YAWL.

What you haven’t seen yet is how larger workflows can be constructed by binding a number of nets together
with composite tasks. We are also capable of iterating through a number of instances of a single task using
Multiple Instance Task constructs. A single task can also be used to trigger the cancellation of current work

6Each XOR-split and OR-split has one flow specified as the default, and is assumed to always have true value, to ensure that the
workflow can continue even when all other flow conditions evaluate to false.

3.5. WHERE TO FROM HERE 41

Figure 3.11: A Determine Credit Requirements work-item shown on a dynamic form

(a) Input Binding Dialog (b) Output Binding Dialog

Figure 3.12: Data Mappings for Determine Credit Requirements Variables

42 CHAPTER 3. GETTING STARTED WITH YAWL

Figure 3.13: XPath predicates to choose between flows of an XOR-Split task

in other parts of the workflow, which might be used for modelling a customer calling and cancelling an
order that is currently being processed. Finally, we haven’t described conditions, which represent the state
a workflow is in after one task is finished but before another starts. Conditions allow us to model two
or more participants competing for the same work, or a user making a decision on things that workflow
systems cannot not automatically determine. An example of this would be asking a participant to decide
on whether the aesthetics of some partially assembled work are appealing or not, and having the workflow
coordinate further work based on that choice.

What we’ve also glossed over here is how to actually use YAWL’s toolset. We have used version 3.0 of the
Editor and of the Engine for the screenshots in this chapter. The components of YAWL can all be found int its
Github repository, via the URL https://github.com/yawlfoundation/yawl. Further explanations of
the use of this environment can be found in the remainder of this user manual, while there is also a technical
manual for those that want to develop more complex applications. A number of case studies documenting
the use of YAWL are also available. A forum around the components of YAWL can be accessed via the
YAWL website (http://yawlfoundation.org/forum. And as mentioned earlier, YAWL is the product
of several years of research into workflow patterns and formal foundations of workflow. This research,
along with other informative material is available via the URL http://yawlfoundation.org.

https://github.com/yawlfoundation/yawl
http://yawlfoundation.org/forum
http://yawlfoundation.org

Chapter 4

The Editor

Before a workflow model can be executed it must first be defined. This chapter describes the YAWL Editor
Version 5.2, a tool for creating, editing, configuring, validating and analysing workflow specifications. New
users are encouraged to read the chapter sequentially; experienced users may pick-and-choose what they
need from this chapter.

Figure 4.1 illustrates the interactions among some of the major components of the YAWL environment.

XML over HTTP

XML

Workflow
specification

Visual process
model

API calls

Figure 4.1: Basic YAWL Component Overview

In this chapter, the icon on the left indicates a hands-on method or instruction.

4.1 Launching the YAWL Editor

The Editor is installed along with the other YAWL System components using any of the installers described
in Chapter 2. It can also be installed manually by downloading the latest version from the YAWL Github
repository: https://github.com/yawlfoundation/editor/releases. Always ensure that the ver-
sion of the Editor you are using matches the version of YAWL installed.

43

https://github.com/yawlfoundation/editor/releases

44 CHAPTER 4. THE EDITOR

The YAWL Editor is distributed as a compressed zip archive, containing a number of Java Archive (jar)
files. Unzip the downloaded zip to any directory, then double click on the YAWLEditor5.2.jar file to start
the application (where supported). The YAWL Editor can also be started from a command line or Terminal
prompt:

java –jar YAWLEditor5.2.jar

4.2 The YAWL Editor Workspace

The first time you start the YAWL Editor, you will be presented with a blank canvas, and a prompt in the
Status Bar advising you to open or create a specification to begin.

Before you create your first specification, let’s take a brief tour of the Editor’s workspace and the elements
within (the use of each element is fully described in later sections). The workspace is shown in Figure 4.2.

Figure 4.2: The YAWL Editor Workspace

4.2.1 The Toolbar

The Tool Bar contains ten groups of buttons that mirror most of the available menu items. Each button
will be enabled or disabled at various times depending on what you are currently doing in the Editor. The
purpose of each button is briefly described below. Further information can be found in later sections, when
required.

4.2. THE YAWL EDITOR WORKSPACE 45

File Actions

This group of buttons provides the standard file options (left to right):

• Create a new specification (Section 4.4.1);

• Open an existing specification file. Specification files will have a .yawl extension;

• Save the currently loaded specification to file (Section 4.3.3). For newly created specifications, this
behaves the same as Save As;

• Save the currently loaded specification As a new file name;

• Close the loaded specification. If there are any unsaved changes, you will be prompted whether to
save the file first before closing.

Transfer to/from Engine

The button on the left allows you to download a specification directly from the YAWL Engine and have it
opened in the Editor for editing. Any specification currently loaded in the Engine can be opened in the
Editor in this way.

The button on the right allows you to upload the specification currently opened in the Editor directly to the
YAWL Engine (without having to save the file to disk).

Edit Actions

This group of buttons provides the standard Undo and Redo options as well as the option cut, copy, paste
and delete the currently selected object(s).

Validation & Analysis

The first of these two buttons allows you to validate your specification against YAWL syntax and semantics
(Section 4.3.3), while the second allows you to deeply analyse your specification for deadlocks and other
issues (Section 4.11).

Add/Remove Sub-Net

Each YAWL specification consists of one or more nets. You can use these buttons to add a new sub-net to,
or remove an existing sub-net from, your specification (Section 4.4.4).

46 CHAPTER 4. THE EDITOR

Cancellation Set Actions

These buttons allow you to (left to right):

• Toggle on or off the management of the cancellation set of the selected task.

• Add the selected object(s) to a task’s cancellation set.

• Remove the selected object(s) from a task’s cancellation set.

See Section 4.6) for more details.

Alignment Actions

These buttons can be used to assist with the alignment of objects within your specification, when multiple
objects have been selected. Left-to-right, they allow you to align selected objects based on top edges, centres
horizontally, bottom edges, left sides, centres vertically and right sides. The first selected object is used as
the reference to align the other objects to.

Resize Element Actions

These buttons can be used to increase or decrease the size of selected canvas objects.

Zoom Actions

These buttons allow you to zoom in or out on the currently selected net. The buttons are, from left-to-right,
reset the net view to actual size, zoom out of the entire net, zoom in on the entire net, and zoom into the
currently selected net elements. Alternately, you may zoom in and out on the currently selected net by
holding down the Shift key and using the mouse wheel. Holding down the Shift + Ctrl keys and using the
mouse wheel will scroll the net’s view left and right.

View Options

The button on the left will toggle on or off a canvas grid to assist in aligning objects. The button on the right
will toggle on or off the tool tips for all items in the Editor.

4.2.2 The Menubar

This section provides a brief overview of the YAWL Menus located along the top of the YAWL Editor. The
majority of menu choices are also available via the toolbar.

4.2. THE YAWL EDITOR WORKSPACE 47

File

The File menu incorporates the File, Transfer to/from Engine, and Validation & Analysis toolbar actions.
Additionally, this menu also contains:

• Open Recent: shows a list of the eight most recent specifications loaded or saved in the Editor, so that
one can be selected to be opened, saving the trouble of navigating to it via the file open dialog. If you
hover the mouse over a listed file for a moment, a tip will appear showing the file’s full path;

• Print: prints the entire loaded specification (graphically);

• Delete Orphaned Decompositions: allows you to permanently remove decompositions that are no longer
attached to any task (see Section 4.7.2 for details of task decompositions).

• Preferences: shows a dialog which allows for the setting of a number of preference items.

Edit

In addition to the toolbar’s Edit actions, this menu also contains items to Cut, Copy and Paste objects
to/from the canvas.

Net

In addition to the Add/Remove Sub-Net toolbar actions, this menu also contains these items:

• Set Net Background Colour: set the background colour of the selected net.

• Set Net Background Image: set a background image for the selected net. Images that are smaller than
the current net canvas are tiled to fit.

• Export to PNG Image: saves a graphical image of the current net to a png file.

• Print Net: prints the currently selected net (graphically).

• Store in Repository: Stores a copy of the current net in the Repository, from where it can be later added
to other specifications (see Section 4.4.8).

• Load from Repository: Adds a previously stored net to the current specification.

• Remove from Repository: Removes a previously stored net from the Repository.

Elements

This menu contains the Alignment, Resize Elements and Cancellation Set toolbar actions. In addition, there
is an item to set the fill colour for all selected objects. There is also a sub-menu titled Decomposition that
contains the following items:

• Store in Repository: Stores a copy of the decomposition of the currently selected task in the Repository,
from where it can be later added to other specifications (see Section 4.7.2).

• Load from Repository: Adds a previously stored decomposition to the current specification.

• Remove from Repository: Removes a previously stored decomposition from the Repository.

48 CHAPTER 4. THE EDITOR

Plugins

The Editor allows developers to create plugin components that can be used within the Editor. Currently,
two plugins ship with the Editor, one that supports Process Configuration (Section 4.19), and another that
provides a toolbar for the setting of task decorators (splits and joins, see Section 4.4.3), as an alternative to
accessing those settings via the Properties Pane.

Help

The Help Menu provides:

• An About dialog, showing the version and build date of the Editor in use. The dialog also provides
web links to the YAWL online forum, and the YAWL issues list (to report any bugs or problems you
may find).

• A Check for Updates item, which allows you to check for any updates to the Editor, and if so, provides
for the downloading and automatic replacement of the current Editor with the latest version (Section
4.20).

4.2.3 Elements Palette

The Elements Palette contains six selectable buttons – five YAWL language icons and a selection tool – that
allow the creation, selection and positioning of objects within your specification. The palette buttons are
also accessible via a popup menu by right-clicking on any blank area of the canvas.

Once a Palette button is selected, it is possible to place objects of that type on the canvas by left-clicking the
mouse button at the desired location. Each is briefly described below.

Atomic Task

Select this button to create one or more Atomic Tasks, each of which represents a single task to be performed,
usually by a human participant or an external application or service.

Multiple Instance Atomic Task

Select this button to create one or more Multiple Instance Atomic Tasks, each of which allows you to run
multiple instances of a task concurrently.

Condition

Select this button to create a Condition, which is a way to represent state for the Net between the execution
of particular tasks.

4.2. THE YAWL EDITOR WORKSPACE 49

Composite Task

Select this button to create a Composite Task, which is a container for a sub-net - with its own set of YAWL
elements and constrained by the same syntax.

Multiple Instance Composite Tasks

Select this button to create a Multiple Instance Composite Task, which allows you to execute multiple in-
stances of a composite task (i.e. a sub-net) concurrently.

Marquee Selection

Select this button to activate the Marquee Selector, which will allow you to select individual or multiple
objects by clicking and dragging the left mouse button. Note: you cannot create flows (arrows between tasks)
while the Marquee Selector is selected.

4.2.4 The Properties Pane

The properties pane provides easy access to view and modify all of the properties of the selected specifica-
tion, net, decomposition and net element (task, condition or flow). Sections can be rolled-up or expanded
as desired, and a brief description of each property is shown in the box at the bottom of the Properties pane.
Some of the more interesting properties of each section are described below.

Specification

All of the specification level properties are set here - authors, data type definition, specification name, title
(used when printing a specification) and version number. Note that a new specification is provided with a
default name of New Specification, which should usually be changed to something more meaningful. If it is
unchanged the first time the specification is saved, it will be set to the user-provided name for the file in the
File→Save As dialog.

Net

Individual net values are set here. A Fill Colour set here will override the default net background colour.
For a specification with multiple nets, you can choose to change which net is the Root Net here. Note that
the current root net cannot be unset directly, rather you must choose a sub-net to promote to root net, in
which case the former root net will be automatically demoted.

Task

A Fill Colour set here will override the default element background colour. A Font set here will override
the default label font, allowing you to set the font family, size and colour for individual net elements. An
Icon for the selected task can be chosen from a dropdown list, and there are more than 400 standard icons to
choose from (you can add your own icons to the list by placing them in a folder and providing its path via
the Preferences dialog). Split and Join Type and Position can all be set via the corresponding dropdown lists.

50 CHAPTER 4. THE EDITOR

The coordinates of a task can be set directly in the Location property. Resourcing for a task can be specified
via its corresponding property, which opens the Resourcing dialog for the task (Section 4.8). This section of
the Properties Pane also provides for how to set Split Predicates via the Split Predicates dialog (Section 4.7.4),
how to set a Timer for a task via the Timer dialog (Section 4.13), and how to set multiple-instance attributes
via the Multiple Instance Attributes dialog (for Multiple Instance tasks only - Section 4.4.5).

Decomposition

When a task is selected, in addition to its properties being shown, the properties of its decomposition (if any)
are also shown in the Decomposition section. A new task will have a single decomposition property: Name,
with a value “None”, denoting it is not yet associated with a decomposition. You can set the decomposition
for the selected task by making a selection from the dropdown list of the Name property. All of the current
task decompositions in the specification will be listed, any one of which can be chosen for the task. Also
listed is the value New..., which should be chosen to create a new decomposition. A decomposition can be
renamed by choosing Rename... from the dropdown list and providing a new name. Once a decomposition
has been added to a task, you can choose which Custom Service the task will be allocated to at runtime
(via a dropdown list), whether it is Automated and if so, which Codelet to associate with it (if any), and the
decompositions Data Variables and Extended Attributes (see Section 4.7.2).

Condition

The properties available for a condition are a subset of those shown for a task (i.e. only those net element
properties relevant to a condition).

Flow

When a flow is selected, all of its properties are shown as read-only (since they are set via other dialogs)
except one, the Line Style, which can be set via a selection from the dropdown list.

4.2.5 Other Components

The Canvas

The Canvas is where elements (objects) are placed to create and modify a YAWL specification.

Notes and Info Pane

This panel consists of two tabs:

• On the Notes pane, you can add free-form text to accompany a selected task or condition. Any text
entered is accessible only at design time;

• The Info pane will list problems or messages that may occur while you are building your model, when
you validate it and when you analyse it.

Status Bar

The Status Bar consists of three parts:

• On the left are two “Connection Status Indicators”, which indicate whether there are currently valid
connections to a running YAWL Engine and Resource Service respectively (required for certain design
activities discussed later in this chapter). A valid connection will show a green indicator, a disconnec-
tion as a red indicator.

4.3. WORKING WITH YAWL SPECIFICATION FILES 51

• Next there is a status message area that provides useful contextual hints while using the Editor.

• On the right is a progress bar, which shows the progress of file open and save events, and so is only
visible during those events.

4.3 Working with YAWL Specification files

The YAWL Editor is a tool that allows you to graphically design a process specification that may be saved
to file and later loaded into the YAWL Engine for execution. This section explains how to create, open and
save YAWL specification files.

4.3.1 Creating a Specification

A YAWL workflow specification consists of exactly one starting net (also known as the root net), and zero or
more sub-nets. The root net is where execution of a specification begins, while sub-nets allow you to design
larger specifications in a modular hierarchy, to aid readability and re-use.

Each net will contain two mandatory components, an input condition () and an output condition (). A
net must always contain exactly one of each, and they cannot be removed from the net. Net elements (tasks
and conditions) are arranged between the input and output conditions and connected by directed arcs, called
flow relations, to define control-flow, or order dependencies, between them.

To create a new specification:

• Click on the Create New Specification button, , at the top left of the toolbar, or select the File Menu and
choose New.

This will create a blank Net called “Net” which will be, by default, the starting (or root) net of the workflow.
For details on changing the starting net, see Section 4.4.8.

4.3.2 Opening a Specification

There are three ways to load a specification into the Editor:

Opening a Specification File

To open a specification file from disk:

• Click on the Open Specification button, , second from left on the toolbar, or select the File Menu and
choose Open.

An Open Specification File dialog appears, from which you may select the file to open. All YAWL specification
files end with a .yawl extension, and only files with that extension will be shown in the dialog.

Alternately, you may choose to reopen a recently opened file selecting the File Menu and choosing Open
Recent. The eight most recently opened files will be listed in a sub-menu, from which you may choose the
file to reopen.

File Drag’n’Drop

A specification file may be loaded into the Editor by selecting the file in a file management tool, such as
Windows File Manager or Finder on OSX, a dragging it directly onto the (empty) canvas of the Editor.

52 CHAPTER 4. THE EDITOR

Download from YAWL Engine

If you have a current connection to a running YAWL Engine (see Section 4.10) you may download any
specification it currently has stored directly into the Editor (i.e. without accessing its disk file). To do so:

• Click on the Download from Engine button, , on the toolbar, or select the File Menu and choose
Download.

• A small dialog will appear that lists all of the available specification files currently loaded in the con-
nected YAWL Engine (Figure 4.3). Make a selection from the list and click OK to download and open
the specification in the Editor.

Figure 4.3: Available Specifications dialog

4.3.3 Saving and Validating a Specification

At any stage you can save your specification to a YAWL disk file (.yawl) that can be later uploaded into
the YAWL Engine, or you may choose to upload the specification directly to a connected YAWL Engine,
bypassing saving it to disk file. In the former case, it is recommended that you first validate the specification
(i.e. check that it is syntactically and semantically correct), unless it is an interim save of an incomplete
specification. In the latter case, the verification is done automatically as part of the upload.

Validating a Specification

To validate your specification:

1. Click the Validate button, , on the toolbar or click File on the Menu and choose Validate.

2. If problems are detected, they will be listed in the Info Pane at the bottom of the Editor with details
of any inconsistencies that would prevent the specification from successfully executing in the YAWL
Engine. The Info Pane tab label also shows the time the last validation was run. Figure 4.4 shows
an example. If a message ends with “<more...>”, you may click on it to see a popup with more
information about the problem and possibly a suggestion on how to fix it. Click anywhere to dismiss
the ‘more information’ box.

Saving a Specification File

To save your specification to file to disk, click on the Save button, , on the toolbar or click File on the Menu
and choose Save. If set in the Preferences Dialog, the ‘File Save Options’ dialog appears (Figure 4.5).

The ‘File Save Options’ Dialog has the following options:

4.3. WORKING WITH YAWL SPECIFICATION FILES 53

Figure 4.4: An invalid specification

• Verify specification When selected, will run a verification each time the specification is saved to file.
Checking this option is recommended, unless you a doing many interim saves of specifications you
know to be incomplete.

• Analyse specification When selected, will deeply analyse the specification each time it is saved to file.
See Section 4.11 for more details of the Analysis process. (Note: analysis may take some time for large
and/or complex models, and should be unchecked for incremental saves of such models).

• Auto increment minor version number When selected, the minor part of the specification’s version
number will increment each time the file is saved. Checking this option is recommended.

• Backup previous version When selected, the last saved version of the specification will be copied to a
file of the same name, but with a .bak extension. Checking this option is recommended.

• Keep all previous versions When selected, the previous version of the specification will be copied to a
file of the same name, but with its version number appended to it, so that an archive of each and every
version of a specification can be maintained. For example, if you have a specification called ‘Insur-
anceClaim.yawl’, and have chosen to auto-increment the minor version number, each time a version
of the file is saved, a copy of the previous version will be created called ‘InsuranceClaim.0.1.yawl’,
‘InsuranceClaim.0.2.yawl’, and so on.

• Show this dialog for each save When selected, the dialog is shown whenever a file is saved, allow-
ing you to change the settings as desired. Since these settings are usually changed infrequently, it is
recommended that this option be unchecked. All of the settings in this dialog can also be accessed via
the Preferences Dialog whenever necessary.

Once the dialog is completed, click OK to save the file. This saved specification file can now be loaded into
a running YAWL Engine and executed (See Chapter 6).

54 CHAPTER 4. THE EDITOR

Figure 4.5: File Save Options dialog

Upload to YAWL Engine

You may upload a valid specification directly to a connected YAWL Engine. As part of the upload, you can
also choose to remove any previous versions of the specification from the Engine, and/or to start of new
instance of the specification in the Engine.

To do so:

• Click on the Upload to Engine button, , on the toolbar, or select the File Menu and choose Upload.

• A small Upload Options dialog will appear that lists the following options (Figure 4.6):

Figure 4.6: Specification Upload Options dialog

– Unload Previous Versions: The Engine allows multiple versions a particular specification to
co-exist in the Engine, so that any currently running instances may continue under previous
versions of a specification, while new instances can be started under new versions. When this
option is selected, all previous versions of the current specification will be removed from the
Engine, subject to whether the following option is checked.

– Cancel Running Cases: If you choose the Unload Previous Versions option above, you may
also choose to cancel any currently running cases that are instances of those versions. If you
choose this option, all currently running instances of previous versions of the specification will be
cancelled, before the removal of those previous versions. If you do not choose to cancel running
cases, then only those previous versions that do not have instances of them currently running
will be removed (because the Engine requires a loaded specification for all currently running
instances).

4.4. THE CONTROL-FLOW PERSPECTIVE 55

– Launch New Case: When selected, the current specification will be loaded into the Engine and a
new instance of it will be launched.

Make the appropriate selections in the dialog then click OK to upload the currently loaded specification
into the Engine. The specification will first be automatically verified, and the upload will proceed only if
there are no validation errors. If the specification is valid and you chose to launch a new case, a message
will appear with the case id of the launched case, if successful, or an error if there were any problems.

NOTE: The Engine requires that all specification layout information (i.e. element locations, colours, fonts,
icons. etc.) be removed from a specification when it is uploaded. Because of this, the Editor will save the
layout information to repository when the specification is uploaded. If the specification is later downloaded,
its layout information will be automatically reattached by the Editor. If you download a specification from
the Engine to a computer other than that which it was uploaded from, the layout information will not be
available to the Editor, and so a default layout will be calculated.

4.4 The Control-Flow Perspective

A workflow specification can be broadly divided into three aspects or perspectives: control-flow (how and
when execution of a specification progresses through its various elements), data (how and when data values
are passed and populated), and resource (what human and non-human resources are required to perform
the work defined within the specification).

This section presents a hands-on walk-through that covers the basic control-flow components of the YAWL
language, and how to use those components to develop a YAWL specification for a simple business scenario
from beginning to end (the data and resource perspectives are discussed in the sections following this one).
Designing the control-flow of a specification begins with choosing the required components from the Palette
and laying them out on the canvas.

The scenario that we will follow throughout this section involves designing and implementing a workflow
for a student who has just completed their secondary study and is now looking to start their career. The sce-
nario will present the student with two choices: to either enrol in a University and begin tertiary education,
or undertake private study that will eventually lead to getting a job.

Look for the “hands-on” icon to the left of instructions for specific details of practical examples.

4.4.1 Create a New Specification

Create a new specification in the Editor as described in the previous section, then:

1. In the Specification section of the Properties Pane, edit the various properties as you feel appropriate
(optional). For the moment, you can ignore the Data Definitions property.

2. Rename the Net by editing the Name property in the Net section of the Properties Pane. Change the
name of the Net to “My Career”. This Net will be the root net for our scenario.

3. You are now ready to start constructing your specification.

4.4.2 Atomic Tasks

An atomic task represents a single unit of work, which may involve interaction with a user via a worklist or
with an external application or web service.

To add an Atomic task to the canvas:

56 CHAPTER 4. THE EDITOR

1. Click on the Atomic Task button, , in the Palette, or right click in an empty area of the canvas and
choose Atomic Task from the popup menu.

• TIP: When you move the mouse pointer over the canvas, it will change to signify which palette
element currently chosen.

2. Position your mouse just to the right of the Input Condition (the symbol, which signifies the starting
point of your process) on the canvas, and click the left mouse button once to place an Atomic Task.

3. Every task that will perform work at runtime must be associated with a decomposition. To set the
decomposition of this task, first click inside it to select it. Then, go to the Decomposition section of the
Properties Pane (you may have to scroll to the bottom) and click the Name property. Select New. . .
from the dropdown list to display a dialog for you to enter a name for the new decomposition.

Set the decomposition name to “Begin My Career”, then click the OK button.

• The decomposition Name property’s dropdown list will show all the current decompositions
in the specification, along with entries to create a new decomposition, rename an exist one, or
remove a decomposition from a task (by choosing None).

• By default, a new task takes on the label of the decomposition that it is associated with (several
tasks are allowed to share the same decomposition). Once you’ve created your task, you are free
to relabel the task to whatever you like. This can be done by entering a new label for the task
via the Label property in the Task section of the Properties Pane, or by double-clicking on the
task an entering a new label in the dialog that appears. This will not change the name of the
decomposition with which the task is associated.

Figure 4.7: An established flow relation

4. Connect the Input Condition to your Atomic Task with a Flow Relation, as shown in Figure 4.7. A flow
relation, most often referred to simply as a flow, is a directed arc (arrow) from one net object to another
– it signifies the ‘flow’ of execution between objects. To draw a flow, first locate a flow connector (they
appear as small crosses as you hover your mouse over the sides of net objects) on the Input Condition.
Hold the left mouse button down over the flow connector and draw a flow by dragging the mouse to
a flow connector on the edge of the Atomic Task (which will appear when the mouse hovers over the
edges of the task). Release the mouse to complete the flow.

• Tip: A flow connector is only shown when it is valid to draw a flow connection between the
objects. Invalid connection attempts include those between two conditions, or multiple flow
to/from tasks without the appropriate split and/or join (see the next section for more details).

That’s it! Your Atomic Task is set.

Repeat the process to insert the following Atomic Tasks in order: ‘Go to University’, ‘Get A Job’,
‘Career Started’. Draw flows between them, and finally between the ‘Career Started’ task and the
Output Condition (the symbol, which signifies the concluding point of your process). You should
end up with a completed net like the one in Figure 4.8.

4.4. THE CONTROL-FLOW PERSPECTIVE 57

Figure 4.8: The “My Career” Net

5. Finally check the validity of specification by clicking on the Validate Specification button, , in the
Menu Toolbar or click on Specification in the Menu and choose Validate. If all things are going to
plan, then you will receive a confirmation message in the Notes Pane at the bottom of the Editor
reporting no problems were found.

4.4.3 Task Decorators

By default, each task may have exactly one incoming flow and exactly one outgoing flow, which allows
only for simple, sequential control-flow arrangements. However, there are usually points in a net where it
is desirable to split the flow into a number of flow paths, and others where it is necessary to join a number
of paths into one path. Decorating a task is the process of adding a split and/or join to the task.

By adding a split decorator to a task, you are specifying that when the task completes, it will be succeeded
by one or more tasks. Here are the choices for a task’s split decorator:

• No split: The task has no split decorator, and so will have exactly one outgoing flow;

• AND split: The task may have one or more outgoing flows. When the task completes, it will activate
each and every outgoing flow;

• XOR split: The task may have one or more outgoing flows, each with an associated boolean condition.
When the task completes, it will activate exactly one outgoing flow – the first that has its condition
evaluate to true, or the designated default flow if none of the other flow conditions evaluate to true;

• OR split: The task may have one or more outgoing flows, each with an associated boolean condition.
When the task completes, it will activate each outgoing flow that has its condition evaluate to true, or
the designated default flow if none of the other flow conditions evaluate to true;

By adding a join to a task, you are specifying at what point the task will become available for execution
through the completion of one or more preceding tasks flowing into it (depending on the type of join). Here
are the choices for a task’s join decorator:

• No join: The task has no join decorator, and so will have exactly one incoming flow;

• AND join: The task may have one or more incoming flows, and will activate only after each and every
incoming flow is activated (through the completion of the task at the other end of each flow);

• XOR join: The task may have one or more incoming flows, and will activate as soon as one incoming
flow is activated (through the completion of the task at the other end of the flow);

• OR join: The task may have one or more incoming flows, and will activate only after each and every
incoming flow that can possibly be activated has activated. Basically this means the completion of each
and every task at the other end of a flow leading into the OR-join that has started or may possibly start
at some future time. More on the OR-join in later sections.

58 CHAPTER 4. THE EDITOR

For more detailed information on join and split types, please consult the YAWL Book or the technical papers on the
YAWL website.

To create a split or join:

1. Select a task.

2. In the Task section of the Properties Pane, select the Split Type property and choose the required split
type, and/or the Join Type property and choose the required join type, from the property’s dropdown
list. You can use the Split Position and Join Position properties to set the orientation of the decorator (i.e.
which edge of the task to attach the decorator to).

• TIP: A decorator toolbar can be displayed via Plugins→Toolbars→Task Decorators from the main
menu. This toolbar has buttons to set the split and join type(s) and their position(s) for the se-
lected task as a convenient alternative to setting them via the Properties Pane.

Figure 4.9: Adding an XOR Split and Join

In our example, select the “Begin My Career” task and set its Split Type property to XOR split. Its
position will default to the eastern edge of the task, as per Figure 4.9.

Create a new Atomic task called “Do Private Study”. This task will represent those students that
choose not to go to University.

Finally, select the “Get A Job” task and decorate it with an XOR join. Its position will default to
the western edge of this task.

3. Split and Join decorators allow you to connect several Flow Relations from and to your task respec-
tively.

Create a flow relation from “Begin My Career” to “Do Private Study”, then create another flow rela-
tion from “Do Private Study” to “Get A Job”, as per Figure 4.9. Notice how the decorators allow more
than one flow to be created to/from tasks. Also note that decorators provide multiple flow connec-
tion points along their edges, which are provided so that you can position flows as desired (it is also
permissible to have several flows connect to the same connection point on a decorator).

4. Don’t forget to check the validity of your specification.

Hint: If you are having trouble with positioning your tasks, the alignment tools are a big help.

4.4. THE CONTROL-FLOW PERSPECTIVE 59

Now, when the “Begin My Career” task has been completed, a choice must be made on which of the two
tasks (“Go To University” or “Do Private Study”) will be followed (via the XOR Split). How that choice
is made will be explained a little later. “Get a Job” will become available after the completion of the task
selected via the XOR split.

4.4.4 Composite Tasks

Composite tasks are placeholders for sub-nets. That is, you can create another workflow in a separate net,
which is represented in the first (or parent) net by the composite task. When a composite task is activated
in the parent net, control branches to the sub-net; when the sub-net completes, control passes back to the
parent net via the completion of the composite task.

To create a Composite Task:

1. Click on the Composite Task button, , in the Palette or right click on an empty part of the canvas and
choose Composite Task.

We are going to replace our existing “Go to University” Atomic Task with a Composite Task. Click
on the “Go to University” Atomic Task and click the trash bin on the toolbar or press the Delete key
on the keyboard to remove it from the net (when you delete a task, any flows connected to it are also
removed). We will add in the new composite task next.

2. Place your Composite Task in your Net. Tip: use the arrow keys on your keyboard to move/adjust the task to
the desired location.

Reconnect the flows from “Begin My Career” to the new Composite Task, and from new Composite
Task to “Get a Job”.

3. Create a new sub-net for the composite task by selecting the task, then go to the Name property in the
Decomposition section of the Properties Pane, and provide a name for the new sub-net (by selecting
New. . . from the dropdown list). A new sub-net will be created (a separate tab will appear for it on
the canvas) and associated with the composite task.

We are going to call this new Net “Attend University”.

Figure 4.10: Root net with “Attend University” Composite Task

60 CHAPTER 4. THE EDITOR

• A sub-net is a particular type of decomposition for a Composite Task, and so shares a number of
the same kinds of properties with decompositions of Atomic Tasks.

• An alternative method to create a sub-net is by clicking on the Create a New Net button, , on the
tool bar, or by clicking on the Net Menu and choosing Add Net. You should set the new sub-net’s
Name property to something more meaningful, then return to your original (root) Net (click on
its tab), click on your Composite Task and choose the newly created sub-net from the dropdown
list in the Decomposition’s Name property.

Choose the “Attend University” net by clicking on its tab, or right-clicking on the Composite Task and
selecting ’Go to sub-net’ from the popup menu. You can now design the content of your new ”Attend
University” sub-net.

Create the following Atomic Tasks in order and then link them with flows, and don’t forget to check
for validity:

• Enrol
• Do Subjects
• Pass All Subjects
• Get Degree

The resulting nets are shown in Figures 4.10 and 4.11.

Figure 4.11: The “Attend University” sub-net

4.4.5 Multiple Instance Atomic Tasks

Multiple Instance Atomic Tasks (MI Tasks) allow you to execute multiple instances of a task concurrently.
That is, from a single MI Task added to a net at design time, a number of instances of that task are instanti-
ated at runtime, based on parameters set for the task and the data available to it.

To create a Multiple Instance Atomic Task:

1. Click on the Multiple Instance Atomic Task button, , in the Palette or right click in an empty part of
the canvas and choose Multiple Atomic Task.

Go back to the “My Career” Net. We are going to replace our existing “Do Private Study” Atomic Task
with a Multiple Instance Atomic task, so click on the “Do Private Study” Atomic Task and delete it.
We will add in the new Multiple Instance Atomic task next.

4.4. THE CONTROL-FLOW PERSPECTIVE 61

2. Place a new Multiple Instance Atomic Task in your Net.

Set the name of this task by selecting the Decomposition’s Name property and choosing the same de-
composition as before, “Do Private Study”, from the drop-down list.

Reconnect the flow relations from “Begin My Career” to “Do Private Study”, and from “Do Private
Study” to “Get A Job”, as per Figure 4.12.

Figure 4.12: Adding a Multiple Atomic Task

3. You will now need to set the parameters of the Multiple Instance Task, which, because it will create
multiple instances of the task at runtime, needs a few more values set than for a simple atomic task.
Select the task and choose the Task’s M-I Attributes property. Click the action button of the property
(the small button to the right of the property’s input field) to show the M-I Attributes dialog (Figure
4.13).

Figure 4.13: M-I Attributes dialog

(a) Choose the Instance Creation mode. Notice the Allow dynamic instance creation checkbox at the
bottom of the dialog. When this checkbox is unselected, the instance creation mode is set to Static,
which means the number of task instances to be started cannot vary once the task begins execu-
tion at runtime. When the checkbox is selected, the instance creation mode is set to Dynamic,
which means the same number of task instances (as static mode) are started initially, but new
instances of the task may be started dynamically at runtime (i.e. after task execution has begun),
up to the value entered in “Maximum Instances” (see also Section 6.7.3 on page 172). In either
mode, the number of task instances created at runtime for the task will be between the values
given for “Minimum Instances” and “Maximum Instances”.

Leave the Allow dynamic instance creation checkbox unselected (i.e. in static mode).

62 CHAPTER 4. THE EDITOR

(b) Set the Minimum Instances value. This is the minimum number of instances of this task that
will be started when the task is activated.

Set the Minimum Instances to 5.

(c) Set the Maximum Instances value. This is the maximum number of instances of this task that
can be created from this task.

Set the Maximum Instances to 100.

(d) Set the Threshold value. The moment all task instances have completed, or if the number of
instances created exceeds the Threshold the number specified for the Threshold have completed,
the multiple instance task itself will be considered complete, and will trigger relevant outgoing
flows from this task.

Set the Continuation Threshold to 50.

(e) Click OK to save your M-I attributes.

With the values set in this scenario, we have specified that the “Do Private Study” task can have a maximum
of 100 instances created, a minimum of five instances will be created, and once 50 instances (or all those
started if less than 50) have completed, the outgoing flow relation to ‘’Get A Job” will trigger. The actual
number of task instances started at runtime for a process will depend on the data supplied to it; more on
this later, and on the use of variables for M-I values, in Section 4.7.6, after the basics of the data perspective
have been introduced.

4.4.6 Multiple Instance Composite Tasks

Multiple Instance Composite Tasks allow you to execute multiple instances of a sub-net, represented by the
multiple instance composite task, concurrently at runtime, based on the parameters set for the task and the
data available to it.

To create a Multiple Composite Task:

1. Click on the Multiple Composite Task button, , in the Palette or right click in an empty part of the
canvas and choose Multiple Composite Task.

Go to the “My Career” Net. We are going to replace our existing “Do Private Study” Multiple Instance
Task, with a Multiple Composite task, so click on the “Do Private Study” Task and delete it. We will
add in the new Multiple Composite task next.

2. Place your Multiple Composite Task in your Net.

Reconnect the Flow Relations from “Begin My Career” to the new Multiple Composite Task, and from
the new Multiple Composite Task to “Get a Job”.

3. Next, create a new Net by clicking on the New Net button, , on the tool bar, or click on Net in the
Menu and choose Create Net, or by creating a new decomposition for the task, as we did for the
Multiple Instance Atomic Task previously.

4.4. THE CONTROL-FLOW PERSPECTIVE 63

4. Give the new Net a name.

We are going to call this new Net “Study Privately”.

5. On the root net, right click on your Multiple Instance Composite Task and choose Go to sub-net (or
simply click on the “Study Privately” tab).

6. You will now need to set the parameters of the Multiple Composite Task, in the same manner as those
set previously for the Multiple Instance Atomic Task, via the Task’s M-I Attributes property.

Set the Minimum Instances to 5, the Maximum Instances to 100, the Threshold to 50, and leave the
Instance Creation type as “Static”.

7. Click OK.

8. You can now complete your new “Study Privately” Net represented by your Multiple Instance Com-
posite Task.

Create the following Atomic Tasks in order and then link them (and the Input and Output Conditions)
with Flow Relations:

• Read a Book

• Feel Smarter

4.4.7 Conditions

Conditions represent states of the workflow that exist between the completion of a task and the starting of
the next, and so are always located between two tasks. To create a Condition:

1. Click on the Condition button, , in the Palette or right click on an empty part of the canvas and
choose Condition.

Go to the “Study Privately” Net. We are going to place a Condition after the “Read a Book” atomic
task, to determine whether we gained any knowledge from the book (that is, we will query the state
of our process at that point).

2. Place your Condition in your Net and set its Label property.

Call this Condition “Knowledge Gained?”.

3. Now link the Condition to the tasks of the net using flow relations.

Select the flow relation between the Read a Book atomic task and the Feel Smarter Atomic Task and
delete it.

Create a flow relation from the “Read A Book” task to the “Knowledge Gained?” condition.

4. Create a flow relation from your condition to a task.

Set the flow relation from the “Knowledge Gained?” condition to “Feel Smarter” atomic task.

64 CHAPTER 4. THE EDITOR

5. Create another flow relation from your condition to another task to signify the two possible flows from
the condition.

Before we create our second flow relation from our condition, first create another atomic task and call
it “Look for Easier Book”.

Add an XOR join decoration to the “Read a Book” task, with a West position.

Then, create a Flow Relation from the “Knowledge Gained?” condition to the “Look for Easier Book”
task, and another Flow Relation from that task back to the XOR join of the “Read A Book” atomic task,
as shown in Figure 4.14.

Hint: to curve a Flow Relation, select it and set its Line Style property to either “Bezier” or “Spline”, then
move the drag point which appears on the Flow Relation to create the desired curve. You can add more drag
points by right-clicking on the Flow Relation.

Figure 4.14: The “Study Privately” sub-net

The Knowledge Gained? condition in Figure 4.14 shows an example of a Deferred Choice construct. When the
condition is reached during execution of the process, both of its outgoing flows are activated (a condition
may have any number of incoming and outgoing flows). This results in both the “Look for Easier Book” and
“Feel Smarter” tasks appearing in the user’s work list, allowing the user to make a (deferred) choice between
the two. As soon as the user chooses the appropriate task for execution, the other task is immediately
withdrawn and is removed from the work list.

4.4.8 Changing the Starting Net

At any stage you can change the starting (root) Net of the specification. Every net in a specification has a
Root Net property. You can use this property to promote a sub-net to be the new root net for the specification.
To do so, select the appropriate sub-net and tick the property’s checkbox. Note that you can’t demote the
current root net directly (its property is greyed out), since that will leave the specification without a root net,
but promoting a sub-net will automatically demote the current root net to sub-net status.

Notice that the root net has an input condition symbol, , in its title tab. All sub-nets have a composite task
symbol, , in their title tab.

4.5. CHANGING THE APPEARANCE OF YOUR SPECIFICATION 65

The Net Repository

The Net menu has three items that allow you to save, load and remove nets to and from the repository. This
means you may save any net (root or sub-net) and all of its contents to the repository. Later, you can load
any saved net from the repository into another specification. In this way, a saved root net can become a
sub-net in a different specification, and vice versa.

To add the current net to the repository, select Net, then Store in Repository. . . from the menu. In the
dialog that appears, give the stored net a name (the current net name is provided, but may be changed as
desired), and a meaningful description, then click OK to save. The net and all its content will be saved to
the repository under the name provided.

To retrieve a previously saved net from the repository, select Net, then Load from Repository. . . , select the
name of the desired net from the list, then click OK. The net will be added to the current specification as a
sub-net, which you can then promote to root net or assign to a composite task as required.

Finally, existing nets can be removed from the repository at any time by selecting Net, then Remove from
Repository. . . , choosing the name for the net to remove from the list of stored nets, then clicking OK.

4.5 Changing the Appearance of Your Specification

At any time, you can change the appearance of the specification, and its nets and elements, on the canvas to
aid in readability. This section discusses those features.

4.5.1 Flow Relations

Relocation You can reconnect flow relations to other elements of a net, or different points on the same
element by selecting the flow, and dragging one of its connecting ends from one net element or position to
another. If a connection is possible to some other element, connection points will become visible as described
earlier. Release the mouse button to attach the flow to its new home.

Select the Flow Relation between “Look for Easier Book” and “Read a Book”, and move its point end from
the top of the task’s XOR join to its side, as depicted in Figure 4.15.

Figure 4.15: Adding bends and labels to Flow Relations

66 CHAPTER 4. THE EDITOR

Adding Labels As well as tasks and conditions, it is also possible to add labels to flows. To do so, double
click on a flow. A small text input box will appear over the flow. Type your desired text, and commit the
flow label by pressing the ENTER key. You may then drag that flow label around to position it as desired.

Place labels on the two outgoing flow relations from the “Knowledge Gained?” condition. Attach the label
yes to the flow relation going from the “Knowledge Gained?” condition to the “Feel Smarter” atomic task.
Attach the label no to the flow relation going from the “Knowledge Gained?” condition to the “Look for
an Easier Book” atomic task. Drag the labels about to a desired position, much like what’s been done in
Figure 4.15.

Line Style There are three line styles available for flows, Orthogonal (straight edged), Bezier (curved with
sharper corners) and Spline (curved with smoothed corners). A line style can be set for a flow by selecting
the flow, then choosing the style from the flow’s Line Style property dropdown list, or right clicking on
the flow and choosing the style from the popup menu. Additional bend points can also be added via the
popup menu. Figure 4.16 shows flows using two different line styles. The outgoing flow from “Look for an
Easier Book” has been given the spline style, while the remaining flows are all orthogonal, resulting in sharp
edged bends on flows, such as the one running from the “Knowledge Gained?” condition to the “Look for
an Easier Book” task.

4.5.2 Editing Multiple Objects

Figure 4.16: Selecting Multiple Objects

You can select more than one object at a time and edit their common properties in one action by using the
Marquee Selection tool. See Figure 4.16.

1. Select the Marquee Selection tool, , from the Palette.

2. Click on the first object that you want to edit, then hold down the Shift key and then click on the other
objects that you want to include. Alternately, click and drag the Marquee tool to include multiple
items in the drag rectangle. To select all the elements in the net, you may also use Ctrl-A.

3. Now, choose Edit from the menu bar to select Cut, Copy or Delete options, or choose Elements from
the menu bar then select Alignment, Set Colour, Increase Size, Decrease Size and options to change
the appearance of the selected objects. The resizing options can also be accessed via the relevant tool
bar buttons.

Depending on the types of elements selected, the Properties Pane also changes to display only those prop-
erties common to the selections, from which a property change will be applied to each selected element
(for example, label fonts can be set for multiple elements in this way). Note also that whenever you have
selected a number of net elements, pressing one of the arrow keys will move the selected elements a small
distance in the direction of the arrow key.

4.5. CHANGING THE APPEARANCE OF YOUR SPECIFICATION 67

4.5.3 Colours and Fonts

For nets, the default background colour can be set (i.e. applied to all nets) via the Preferences dialog by
choosing File. . . Preferences on the top menu bar (see Section 4.9 for details). To set the background colour of
individual nets, overriding the default colour, choose Net Background Colour. . . from the Net menu, or set
the net’s Fill Colour property.

For tasks and conditions, the default fill colour (i.e. for all newly added tasks and conditions) can also be
set via the Preferences dialog. For individual tasks and conditions, select it then set its Fill Colour property.
Several selected tasks and/or conditions can have their fill colour set at the same time by choosing Set
Selected Fill Colour. . . from the Elements menu.

For tasks and conditions, the default font family, size and colour can also be set via the Preferences dialog. The
default font settings can be overridden for individual tasks and conditions via their Font property (Figure
4.17).

Figure 4.17: Font dialog

4.5.4 Task Icons

You can add, change or remove an icon to any atomic task, to signify or identify its intended action or to
aid in readability. You are free to assign any icon, there are over 400 to choose from. Icons have no effect on
how the task is instantiated at runtime.

To add or change a task icon, select any single atomic task, then select its Icon property. Choose the desired
icon from the dropdown list. To remove an icon, select ‘None’ from the dropdown list.

Using Custom Icons You may also plug in and use your own icon sets. Icons must be of the PNG file
format, and be a maximum of 24 × 24 pixels to render properly within task boundaries.

The editor will load user-supplied task icons from the location specified for them in the File Pathspane of the
Preferences dialog (cf. Section 4.9); if never specified, the location defaults to the directory:

<editor_installation_path>/YAWLEditorPlugins/TaskIcons

All icons found in the specified location are added to the dropdown list of the Icon property for selection.

If a specification is loaded into the editor that contains a reference to an icon that cannot be found, a special
“broken” icon will render in its place, as depicted in Figure 4.18.

68 CHAPTER 4. THE EDITOR

Figure 4.18: A task specifying an icon that the editor cannot locate

4.5.5 Task Indicators

Task indicators are mini-icons that appear across the top of a task to provide a visual cue regarding certain
settings that have been applied to the task. An example of a task with all three possible indicators is shown
in Figure 4.19.

Figure 4.19: Task Indicators

The three task indicators (left to right in Figure 4.19) are:

• Timer: This task has had a timer set (see Section 4.13).

• Automated: This task has been set as automated (see Section 4.12). If this automated task also has a
codelet specified, it will be filled green (see Section 4.12.1).

• Cancellation Set: This task has had a cancellation set defined (see Section 4.6).

These task indicators are rendered on top of any icons set for the task.

4.6 Cancellation Sets

Cancellation Sets allow you to nominate any number of tasks, conditions and/or flow relations (which,
when they join two tasks directly, contain an implicit condition that is not visible on the net) for cancellation,
upon the completion of a specified task. That is, once a specified task has completed execution in a workflow
instance, all other net elements within that task’s nominated cancellation set (if any) are deactivated.

To create a Cancellation Set for a task:

1. First select the task to create the Cancellation Set for.

2. Choose View Cancellation Set from the Elements menu, or click the View Cancellation Set toolbar
button . The task will fill with a grey colour to indicate that this is the task that ‘owns’ the cancellation
set currently on view.

Create a new “Purchase Book” specification as shown in Figure 4.20, noting that the “Get Book Details”
task has an AND-split and the “Pay” task has an XOR-join. In this example, we are going to purchase
a book by placing an order with three different sellers. As soon as the first seller fills the order, we
want to cancel the other two orders. To achieve this, we create a cancellation set for each “Order”
task that includes the other two “Order” tasks. We will step through creating a cancellation set for the
“Order from Amazon” task – the other two are created in a similar manner.

4.6. CANCELLATION SETS 69

Figure 4.20: The Purchase Book specification

Select the “Order from Amazon” task and view its Cancellation Set using either method described
above.

3. Next, choose a task, condition or flow (and thus an implicit condition) to add to the Cancellation Set.
Hold down the shift key to select more than one object for cancellation.

Select the “Order from Booktopia” and “Order from Bookfinder” tasks, and the flow relation preced-
ing each of them.

4. Click on the Add Selected Items to Visible Cancellation Set button, , on the toolbar, or choose
Elements→Add to Cancellation Set from the menu. Items will be given a red border to indicate
they belong to the cancellation set of the grey-filled task (see Figure 4.21).

Add the selected tasks and flow relations to the cancellation set.

5. Once you have established the cancellation set, you can again choose View Cancellation Set from the
Elements menu, or click the View Cancellation Set toolbar button, , to toggle off the cancellation set
view. The selected elements will return to their original colours, and a cancellation set task indicator
will appear (a red dot in the top right) in the cancelling task to indicate that the task has a cancellation
set defined.

Notes about Cancellation Sets:

• We gave the “Get Book Details” task an AND-split and the “Pay” task an XOR-join because we know
that when one of the “Order” tasks completes, the other two will be cancelled, so in every case only
one incoming flow to the “Pay” task will activate. Since we want the process to complete, we must
add the join type that will activate the task when a single incoming flow activates: the XOR-join. If an
AND-join had been used here, it would wait until all three incoming flows were activated, which in
this case is never going to happen, and would result in a deadlock of the workflow instance. However,
without the careful setting of cancellation sets for all three intermediate tasks, the net would represent
an example of an unsound net, which basically means the net may complete while there were still active
tasks within it. Great care needs to be taken when mixing split and join types, and when defining
cancellation sets, so that the execution of the net behaves precisely as intended.

• A Cancellation Set that has been created will remain in the specification, regardless of whether you
have the View Cancellation Set option ticked.

70 CHAPTER 4. THE EDITOR

Figure 4.21: A Cancellation Set specified for the “Order from Amazon” task

• You can create multiple Cancellation Sets in your workflow, by selecting another task and choosing
the View Cancellation Set option. Only one cancellation set may be viewed at any one time.

• All flows leading to or from (explicit) conditions are not valid cancellation set members. Neither are
the Input and Output conditions. The editor will ignore them if you select them for inclusion in a
task’s cancellation set.

• A task may be included as a member of its own cancellation set.

• The reason for including preceding flows of a task in a cancellation set is this: If a flow relation connects
two tasks directly, then it is said to contain an implicit condition. If there is a condition object in the
model between two tasks, so that the connection is task - flow - condition - flow - task (for example,
the “Knowledge Gained?” condition in Figure 4.15), it is said to be an explicit condition. In either case,
when a task completes, it passes ‘control’ to the condition preceding the next task in the flow. When
the next task is started, it takes ‘control’ from its preceding condition (whether implicit or explicit).
If there is a chance that the tasks in a cancellation set may not have started when the owner task of
the set completes, then cancelling those tasks will have no effect – it is their preceding conditions that
have ‘control’ and so they are the elements that must be cancelled. By including both tasks and their
preceding conditions, we are ensuring that the desired cancellation will occur, regardless of whether
the tasks in the set are currently executing.

To remove an element from a task’s Cancellation Set:

1. First, make sure you have the View Cancellation Set option selected for the task.

2. Select the element(s) for removal.

3. Click on the Remove Selected Items from Visible Cancellation Set button, , on the toolbar, or choose
Elements→Remove from Cancellation Set from the menu.

4.7 The Data Perspective

A workflow process that describes the control-flow perspective only is of limited use. To get any real work
done, data must be created, manipulated, transformed and passed to various users, applications and ser-
vices throughout the process. The section discusses the YAWL Data Perspective.

4.7. THE DATA PERSPECTIVE 71

In general terms, each net in a YAWL specification defines and controls a set of data variables that have
values assigned to them during its life-cycle. Certain net variable values are passed to task-level variables
using a binding expression or parameter when the task instance begins, with values passed backed from task-
level to net-level using another binding expression when the task instance completes. Net-level variable
values are also used at runtime to determine the choice of flow(s) to take from an XOR-split or OR-split
through the evaluation of a Split Predicate associated with each flow.

All data is defined and stored as XML Schema. That is, all net-level and task-level variables store XML
Schema data type values, and all binding and split predicate expressions use a combination of XQuery and
XPath expressions to evaluate the data.

A great deal of effort has gone into designing the Editor to make it as easy as possible to create the variables
and expressions required for a specification. In many cases, you don’t need to be exposed to the underlying
XML at all, but of course the Editor allows you to also “get your hands dirty” in XML whenever you need
to.

4.7.1 Creating Net-Level Variables

You can add variables to a net to store information relating to that net that tasks within the net may need to
read or update.

To add a variable to a Net:

1. Select the Data Variables property in the Net section of the Properties Pane, then click its Action button
to show the Data Variables Dialog for the Net.

We will be adding Net variables in the “Attend University” net. Go to the “Attend University” net
and choose its Data Variables property, then open the Data Variables Dialog (see Figure 4.22).

Figure 4.22: Adding “Attend University” Net Variables

2. Click the + button on the toolbar under the list area to begin adding a new variable. Enter a Name for
the variable, choose the appropriate Type and intended Scope of the variable from those listed, then
click OK to save the variable and close the dialog.

Add a new net variable: enter “StudentNumber” for the Name of the variable, leave the Type as

72 CHAPTER 4. THE EDITOR

“string”, the Scope as “Local”, and the Initial Value blank. Create another net variable with the Name
“SubjectCode”, Type “string”, Scope “Local” and Initial Value blank (scope types will be explained a
little later). Click OK to save the new variables.

4.7.2 Creating Task-Level Variables

Task-level variables are not added to a task directly, but rather to its decomposition.

Task Decompositions

By choosing the Name property in the Decomposition section of the Properties Pane, or by entering a new
name in that property, you are identifying which task decomposition will be associated with the task. A task
decomposition describes the variables ‘handled’ by the task.

Like nets, tasks have decompositions where you can specify variables and a name to associate with the task.
Unlike nets, which cannot share decompositions within a specification, there is a 1:N relationship between
task decompositions (scoped to the entire specification) and their tasks (scoped to nets), meaning that a
number of tasks within a specification may share the same decomposition.

Besides variables and a name, task decompositions also allow the workflow designer to identify which
web service the decomposition should invoke in a running workflow engine when the task is initiated, and
whether the decomposition will create manual (i.e. human-actioned) or automated (non-human-actioned)
tasks. When two tasks share the same decomposition, we are saying that the same activity is required in two
different places in the workflow (the two tasks may be named the same or differently, but they will share
the same underlying definition of work).

From the Decomposition Name property, you can use the dropdown list to select an existing decomposi-
tion, or alternately you can select New. . . to create a new one that will become the task’s decomposition
(Figure 4.23).

Figure 4.23: Select Task Decomposition detail (example “Get a Job” task)

You can add variables to a task decomposition (referred to as task-level variables) to store specific information
relating to the task(s) associated with it, in a similar way to adding variables to a net. Task-level variables
have several uses. One use is for transferring information between users and the process instance. A second
use is for passing data between web services and/or external code and/or applications that the YAWL
Engine invokes and the net the task resides in.

For example, if your task is called “Purchase a Book”, you may want to store the name and/or ISBN of the
book being ordered, so that information can be sent to a book store’s web service.

To add a task-level variable to a decomposition:

4.7. THE DATA PERSPECTIVE 73

1. First select the task that will require the variable.

We will be setting up variables for the “Enrol” task. Go to the “Attend University” Net and select the
“Enrol” task. We have already created an empty decomposition for this task earlier in this chapter.

2. Select the Decomposition’s Data Variables property, then click the Action button to show the Data
Variables Dialog. When the dialog is invoked for a decomposition, it shows both the net-level and
task-level variable lists (Figure 4.24).

Figure 4.24: Adding Task-Level Variables

3. Enter the Name of your variable, choose the Type of the variable and its Scope from those listed, then
click OK to save the new variable and close the dialog.

Enter “StudentNumber” for the name of the variable, leave the type as string, and the scope as “Input
& Output”. Create another variable for the same task called “SubjectCode” with type string and
scope of “Input & Output”. Click OK to save and close. The “Enrol” task now has two variables,
“StudentNumber” and “SubjectCode” (Figure 4.24).

The Decomposition Repository

The Elements menu has a Decomposition item which provides three sub-menu items that allow you to save,
load and remove decompositions to and from the repository. This means you may save any decomposition
and all of its variables to the repository. Later, you can load any saved decomposition from the repository
into another specification. In this way, a stored decomposition can be reused in other specifications.

74 CHAPTER 4. THE EDITOR

To add the currently selected decomposition to the repository, select Elements, Decomposition, then Store
in Repository. . . from the menu. In the dialog that appears, give the stored decomposition a name (the
current decomposition name is provided, but may be changed as desired), and a meaningful description,
then click OK to save. The decomposition and its content will be saved to the repository under the name
provided.

To retrieve a previously saved decomposition from the repository, select Elements, Decomposition, then
Load from Repository. . . , select the name of the desired decomposition from the list, then click OK. The
decomposition will be added to the current specification, and will appear in the Decomposition Name prop-
erty’s dropdown list, from where it can be assigned to any task as required.

Finally, existing decompositions can be removed from the repository at any time by selecting select Elements,
Decomposition, then Remove from Repository. . . , choosing the name for the decomposition to remove
from the list of stored decompositions, then clicking OK.

4.7.3 Data Bindings

A data binding (also called a data parameter or mapping) defines how a value is assigned to a variable, and
how a value is passed between net-level and task-level variables and vice-versa. Both Input and Output
Parameters can be assigned to any tasks (depending on their scope) to allow the passing of data between
nets and their tasks, and between tasks and YAWL Engine, users and web services. Data may also be
assigned to and from net and/or task variables directly from an external data source (more later in this
section).

Defining Bindings with XQuery

Bindings may be defined using XQuery expressions1. Input Bindings use an XQuery expression to specify
a value (generally drawing on one or more net-level variable and/or static values) that can be passed to a
single selected task-level variable. Output bindings use an XQuery expression to specify a value (generally
drawing on one or more task-level variable and/or static values) that can be passed to a single selected net
variable.

For example, if a task is called ‘Lookup Book’, then an Input binding could pass the name of the book from
a net-level to a task-level variable, whereas the Output binding of that task may produce the corresponding
ISBN for that book back to a net-level variable.

To add an Input binding:

1. Select the task to add the binding to.

We will be setting up Input bindings for the variables that we created in the Creating Task-Level
Variables section above. Go to the “Attend University” Net and select the “Enrol” task.

2. Select the task’s Decomposition Data Variables property, an open its dialog.

If you haven’t set up Task variables for this task yet, please return to Section 4.7.3) to do so.

In the Data Variables Dialog, notice that the decomposition variables are currently shown italicised –
this indicates that we are yet to provide the required data bindings for those variables. Select the “Stu-
dentNumber” variable from the list of existing decomposition variables, then click the Input Bindings
dialog button on the lower toolbar (Hint: To select the whole row, click on the ‘arrowhead’ to the row’s
left). The Input Bindings dialog will appear.

1An examination of the XQuery language is beyond the scope of this chapter; good XQuery learning resources can be
found at https://www.w3schools.com/xml/xquery_intro.asp and https://www.stylusstudio.com/xquery.html/
developers/

https://www.w3schools.com/xml/xquery_intro.asp
https://www.stylusstudio.com/xquery.html/developers/
https://www.stylusstudio.com/xquery.html/developers/

4.7. THE DATA PERSPECTIVE 75

Figure 4.25: The Input Bindings Dialog (with auto-generated binding)

The dialog consists of 4 main parts (top to bottom):

• The Input To panel contains a dropdown list of all task variables defined for the selected task,
allowing you to choose which variable to provide an input binding for. The variable that was
selected on the Data Variable dialog when the Input Binding Dialog button was clicked will be
selected initially in the Input To list.

• The Generate Binding From panel allows you to select a source variable to use as the basis for
an automatically generated binding. Two lists are available, Net Variables and External Data
Gateways (more on these a little later). If there is a net variable of the same name and data type
as the selected task variable, it will be initially selected in this list. If you intend to enter your
own XQuery expression manually for the binding, you can ignore the contents of this panel.

• The Binding panel, where the XQuery expression for the binding is entered. There are three
toolbar buttons in this panel:

– The Auto Binding button: click this button to generate and insert a valid binding from the
selected Generate Binding From source.

– The Reset button: click this button to revert back to the XQuery that existed when the dialog
was opened (if any).

– The Auto Format button: to reformat the layout and indentations of large XQuery expres-
sions.

• The validation message pane.

If you are familiar with XQuery syntax, then you can add an XQuery expression directly to perform
the assignment of values to Input variables. When entering an XQuery, it is continuously validated
for syntactic “well-formedness” and, when it meets that criterion, further validated to ensure it is
assigning a value of the correct data type for its target variable. Remember to watch the message pane

76 CHAPTER 4. THE EDITOR

at the bottom of the dialog for helpful messages. Valid expressions will be denoted by a green “OK”
in the message pane.

Check that the “StudentNumber” task-level variable is selected in the Input To panel, and the “Stu-
dentNumber” net-level variable is selected in the Generate Binding From panel, then click the Auto
Binding button. Notice that an appropriate XQuery has been generated that extracts the value of the
selected variable from the net-level. Click OK to save the binding and exit the dialog.

Now, select the “SubjectCode” decomposition variable, and add an input binding for it using the
same technique as described above. Again, when done click OK to save the binding and exit the dia-
log.

To add an Output Binding:

1. Select the task to add the binding to.

We will now be adding the Output bindings for the variables that we created in the Creating Task-Level
Variables section previously. If you haven’t already done so, go to the “Attend University” Net and
select the “Enrol” task.

Figure 4.26: The Output Bindings Dialog (with auto-generated binding)

2. Select the task’s Decomposition Data Variables property, an open its dialog.

If you haven’t set up Task variables for this task yet, please return to Section 4.7.3) to do so.

In the Data Variables Dialog, select the “StudentNumber” variable from the list of existing task-level

4.7. THE DATA PERSPECTIVE 77

variables, then click the Output Bindings dialog button on the lower toolbar. The dialog will appear.

Like the Input Bindings dialog, the Output Bindings dialog consists of 4 main parts (top to bottom):

• The Output To panel allows you to select a target variable to provide an output binding for. Two
lists are available, Net Variables and External Data Gateways. If there is a net variable of the same
name and data type as the selected task variable, it will be initially selected in this list.

• The Generate Binding From panel contains a dropdown list of all task variables defined for the
selected task to use as the basis for an automatically generated binding. The variable that was
selected on the Data Variable dialog when the Output Binding Dialog button was clicked will be
selected initially in this panel. If you intend to enter your own XQuery expression manually for
the binding, you can ignore the contents of this panel.

• The Binding panel, where the XQuery expression for the binding is entered. There are three
toolbar buttons in this panel:

– The Auto Binding button: click this button to generate and insert a valid binding from the
selected Generate Binding From source.

– The Reset button: click this button to revert back to the XQuery that existed when the dialog
was opened (if any).

– The Auto Format button: to reformat the layout and indentations of large XQuery expres-
sions.

• The validation message pane.

If you are familiar with XQuery syntax, you can add an XQuery expression directly to perform the
assignment of values to Output variables. When entering an XQuery, it is continuously validated
for syntactic “well-formedness” and, when it meets that criterion, further validated to ensure it is
assigning a value of the correct data type for its target variable. Remember to watch the message pane
at the bottom of the dialog for helpful messages. Valid expressions will be denoted by a green “OK”
in the message pane.

Check that the “StudentNumber” variable is selected in the Output To panel, and the “StudentNum-
ber” task variable is selected in the Generate Binding From panel, then click the Auto Binding button.
Notice that an appropriate XQuery has been generated that extracts the value of the selected variable
from the task-level. Click OK to save the binding and exit the dialog. Notice that in the list of De-
composition Variables the “StudentNumber” variable is no longer italicised, denoting that it now has
valid input and output bindings defined

Now, select the “SubjectCode” decomposition variable, and add an output binding for it using the
same technique as described above. Again, when done click OK to save the binding and exit the
dialog.

Smart Data Bindings

Smart Data Bindings provide an easy way to create data bindings between net-level and task-level variables.
Let’s see an example of how they work.

1. If your following on from the previous section, open up the Data Variables Dialog for the “Enrol” task
of the “Attend University” net, and remove both task-level variables (Hint: Use the – button on the tool
bar at the bottom of the variable list). Click Apply to save the changes without closing the dialog.

2. Now, re-add the two decomposition variables (see Section 4.7.3 for a reminder if needed).

3. You should now have two task-level variables of the same name and data type as the two net-level
variables. Notice that the task-level variables are italicised to remind you that they don’t yet have the
required data bindings defined.

78 CHAPTER 4. THE EDITOR

4. Click the Smart Data Bindings button, , on the toolbar under the task-level variables list. Both the
Input and Output bindings for both variables have been automatically generated – you can check by
looking in the Input and Output Bindings dialogs for each task-level variable.

Smart Data Bindings works by searching for a net-level variable of the same name and data type of each
decomposition-level variable that has missing data binding(s). If it finds a match, it will auto-generate the
required bindings.

Adding Task Variables using Drag’n’Drop

The editor provides a third and even easier way to create task-level variables: the drag’n’drop method.

1. Let’s delete our task-level variables again from the Data Variables Dialog for the “Enrol” task of the
“Attend University” net. Click Apply to save the changes without closing the dialog.

2. Now, say you want to bind the “StudentNumber” net-level variable to the “Enrol” task. Simply select
the net-level variable, then holding the mouse button down, drag and drop the variable onto the task-
level variable list.

3. A task-level variable of the same name and data type, with InputOutput scope and with all bindings
generated, is created. Do the same for the other net-level variable, “SubjectCode”. Click OK to save
the changes and close the dialog.

Once you have dropped the net-level variable into the task-level variable list, you are free to change the
name and/or scope of the new task-level variable, but changing the data type may mean that any bindings
are no longer valid.

Note that at any time while the Data Variable dialog is open from the Decomposition Data Variables property,
the net-level variables list can also be edited (i.e. new net-level variables can be added, and existing ones
updated or removed).

The Bindings Summary Dialog

You can view a summary of all input and output bindings for a task’s variables from the Data Variable
Dialog by clicking on the Quick View Bindings button, , on the task-level variable list toolbar. An example
of the dialog can be seen in Figure 4.27.

The dialog presents a read-only view, but the toolbar under each list provides two buttons, the first for
opening the selected binding in the appropriate Bindings dialog for editing, the second for removing the
binding from the variable (which won’t be necessary in most cases).

Now that we have an understanding of net-level and task-level variables, and how to create bindings to
map values between them, we can revisit the earlier example from Section 4.7.3, where we created two local
variables for the sub-net “Attend University”. By creating them with Local scope they are actually different
variables than those of the same name created in the outer (parent) net “My Career”. If you wanted to map
the values of those variables from the parent net to the sub-net, then their scope in the sub-net will need to
be changed from Local to Input Only (since they are not to be updated in the sub-net’s tasks), then perform
the appropriate mapping between the parent net and the “Attend University” composite task, following
one of the methods described above.

Defining Parameters using External Data Sources

As an alternative to mapping parameter values from net-level to task-level and back again, task (and net)
variables may be assigned values directly from an external data source on starting and be directly mapped

4.7. THE DATA PERSPECTIVE 79

Figure 4.27: The Bindings Summary Dialog

back on completion. External data sources are accessed via a specific External Data Gateway. For task data
bindings, the list of available external data gateways shown in the Input and Output Bindings dialogs, from
where one can be chosen as an alternate source and/or target of task variable values. For the net-level,
gateways can be selected via the Net’s Data Gateway property dropdown list.

SimpleExternalDBGateway is an example gateway that ships with YAWL. Any other gateways imple-
mented by developers will also be listed (see Note below).

A net-level external data gateway may also be chosen, so that each time a net is started for a specification
the chosen data gateway will be called to populate its net-level variables, and when each net completes, the
data gateway will be called to update output values from the case back to the specified external data source.

Note: Specific data gateways must be created for each specification that wishes to access an external data
source directly. How to create a data gateway is outside the scope of this manual. Please refer to the YAWL
Technical Manual for more details.

Notes about bindings

• For simple assignments, such as those in Figures 4.25 and 4.26, the XQuery expressions for input
bindings follow the form {/name of net/name of variable/text()} and are bound to a task variable,
while those for output bindings follow the form {/name of task/name of variable/text()} and are
bound to a net variable.

• An Input Scope mode means that the variable requires a value (from a net-level variable or external
data gateway or a literal) to be mapped into it when its task starts (via an input binding). An Output
Scope means that the variable is required to map a value from it (to a net-level variable or external
data gateway) when its task completes (via an output binding). An InputOutput Scope combines both
requirements.

• In addition to Input, Output and InputOutput, net-level variables may have Local Scope, which signifies
accessibility within the net but not external to it. Thus, sub-nets require net-level variables with modes

80 CHAPTER 4. THE EDITOR

Figure 4.28: Task input bindings with external data gateway mapping

other than Local to support data passing to and from their parent nets. A root (or top-level) net with
variables of type Input or InputOutput will, when started, request values for those variables from a
user via a form, before the first task in the net is activated. No action is taken for Output scopes set for
root net variables.

• Input bindings may be created only for variables of scopes Input or InputOutput. For task-level vari-
ables, all input variables must have a binding that maps a value to it.

• Output bindings may be created only for variables of scopes Output or InputOutput. For task-level
variables, all output variables must have a binding that maps a value from it.

• A single task may map some values via XQuery and others via external data gateways. That is, data
can be sourced from either net-level variables, external data gateways or both for the variables of a
single task.

• It is possible to combine several task-level output variables into a single, complex data type to pass to a
net-level variable of that data type. That is, there need not be a 1:1 mapping between task-level output
variables and net-level variables, the only requirement is that there is some binding expression(s) to
contain bindings for every task-level variable with output scope.

4.7.4 Split Predicates

When dealing with tasks that have XOR and OR splits, we need some way of defining which flow(s) should
be activated at runtime. This is achieved by associating a boolean XQuery expression with each flow. At
runtime, the flow expressions are evaluated and:

• if the split type is an OR-split, each flow that has an expression that evaluates to true will be executed.

4.7. THE DATA PERSPECTIVE 81

• if the split type is an XOR-split, the first listed flow that has an expression that evaluates to true will
be executed.

Since it is possible that all flow expressions may evaluate to false in a given process instance, XOR and
OR splits must nominate a default flow, which will activate if all of the other flow expressions evaluate to
false, to ensure that the workflow does not deadlock (i.e. is not blocked at that point from proceeding and
eventually completing). Default flows are defined by prioritising the order in which the various flows of a
split are evaluated – the one prioritised last in the order becomes the default flow.

To update the split predicates of a task that has a split, select the task and choose the Task Split Predicates
property. The Split Conditions dialog appears, which lists the targets of the outgoing flows of the split and
each flow’s corresponding predicate (or flow condition).

The arrowed buttons at the bottom of the list allow you to reorder the evaluation sequence of the predicates,
so that the default predicate (the one you want to have activated when all others fail) can be placed at the
bottom of the list. Carefully ordering the evaluation sequence is especially important when dealing with an
XOR-split, because only the first that evaluates to true will be activated, and all subsequent flows will be
ignored.

The currently selected flow in the dialog will be identified by being highlighted green in the Net (Fig-
ure 4.29).

Figure 4.29: Split Conditions Dialog

Predicates typically include chosen net-level variables so that their current values can be evaluated, thus
allowing contextual decisions to be made. Because split predicates are evaluated after the completion of the
task with the split, its variable are no longer available and so can’t be included in predicate expressions.

A predicate for a particular flow can be entered directly into the dialog, or you can click the Action button
next to a selected predicate to open the Update Predicate dialog (Figure 4.30). You can enter a predicate as
a boolean XQuery expression directly, and/or use the Generate Predicate button, , to help build a data
expression using the selected net-level variable from the dropdown list. Click OK to save the changes and
close the dialog, then OK again on the Split Conditions dialog. (Note that a net-level local integer variable
called ‘score’ has been introduced to the net in the example for the purposes of showing how to create a
boolean XQuery expression for a flow predicate; it is not used again in this tutorial).

Timer Predicates

Timer predicates are special (non-XQuery) expressions that may be used as flow predicates. For each task
that has a timer associated with it (cf. Section 4.13) an implicit, net-level timer-state variable is created and
maintained at runtime. At any particular time during the execution of the net, a timer-state variable can
have one of four values (Table 4.1).

82 CHAPTER 4. THE EDITOR

Figure 4.30: Predicate Update Dialog

dormant Timer has not yet started
active Timer is running
closed Task completed before timer expired
expired Timer expired before task completed

Table 4.1: Valid states of timer state variables

A timer predicate can have one of two operators, = (equals) or != (not equals), and takes the form:

timer(name of task) operator ‘timer-state’

For example, assuming a task called ‘Enrol’ has a timer, then on any outgoing flow from an OR-split or
XOR-split on any task in the net that also contains the ‘Enrol’ task, the following example timer predicates
are valid:

• timer(Enrol) = ‘dormant’

• timer(Enrol) =‘active’

• timer(Enrol)=‘expired’

• timer(Enrol) != ‘expired’

Notes:

• Timer predicates are case-sensitive (including the ‘timer’ keyword, the name of the task and the state
value).

• Timer predicates are specialised split predicates, and are available only for use as split predicates.

4.7.5 Data Type Definitions

As mentioned above, YAWL uses XML Schema to define data documents that are passed from net to task
and back during the life of a workflow instance. There are over 40 simple XML Schema data types (string,
integer, boolean, etc.), all of which are supported by YAWL.

4.7. THE DATA PERSPECTIVE 83

Figure 4.31: Adding the “Geek”, “Book” and “Booklist” complex data types

While the simple data types are often sufficient to support process needs, the Editor also provides for the
definition of user-defined simple and complex data types, which may be added to a specification and then
used to define variables based on those types. To define a new type for a specification:

1. Select the Data Definitions property in the Specification section of the Properties pane, then click on the
Action button (at the right of the property) to open the Data Definitions Dialog.

2. Enter an XML Schema Data Type Definition into the dialog. (See Figure 4.31). Any valid XML Schema
definitions are acceptable.

3. As you enter your schema, it is continuously validated. Remember to check the messages pane at
the bottom of the dialog for helpful messages about current errors in the schema, including the line
and column numbers where the error occurs. An example of this is shown in Figure 4.32. When the
schema passes validation, the pane will show a green “OK” message and the Done button will be
enabled. The schema may now be used to define Net or Task data variables in your specification.

Open the Data Type Definitions dialog and type in the XML text that appears in Figure 4.31.

The Data Type Definition dialog comes with its own toolbar (Figure 4.33). From left to right, the buttons are:

• Cut, Copy, Paste text;

• Undo, Redo changes;

84 CHAPTER 4. THE EDITOR

Figure 4.32: Example of an invalid data type definition

Figure 4.33: The data type definition dialog toolbar

• Toggle the viewing of line numbers on and off;

• Format text (fix indentation etc.);

• Store, Load and Remove selected definitions to and from the Repository – this allows data definitions
to be reused in other specifications (see below).

• Search for text.

The example in Figure 4.31 creates a complex data type called “Geek” that has two separate sub-components,
“Name” and “Salary” of type “string” and “double” respectively. Types called ‘Book’ and ‘Booklist’ are cre-
ated in the same way. As depicted in Figure 4.34, the new data type “Geek” is available to choose from the
list of available types when creating a task or net variable.

Net variables with a usage of “Local” can have initial values specified for them, as depicted in the same
figure. As with the data type definition dialog, validation errors will appear when the initial value text is
invalid for its data type schema.

4.7. THE DATA PERSPECTIVE 85

Figure 4.34: A “Geek” net variable with a valid initial value

The Data Type Definition Repository

As mentioned above, the Data Type Definition dialog provides three buttons on the dialog tool bar that
allow you to save complete or partial data type definitions to the repository and later retrieve them for
other specifications.

To add a data type definition to the repository, first select it in the dialog’s editor then click the ‘Add to
Repository’ button () Add a label and meaningful description for the definition to the dialog that appears,
then click OK to save.

To retrieve previously saved data type definitions from the repository, first place the cursor at the desired
insertion point, then click the ‘Load from Repository’ button (). Select the label for the desired definition
from the list, then click OK. The previously saved definition will be inserted at the cursor.

Finally, existing data type definitions can be removed from the repository at any time by clicking the ‘Re-
move from Repository’ button (), selecting the label for the definition to remove, then clicking OK.

4.7.6 Multiple Instance Queries

Now that we have an understanding of data bindings and XQueries, we can revisit, from a data perspective,
binding definitions for the particular requirements of Multiple Instance (MI) Tasks. In general terms, an MI
task will contain a number of variables, one of which is an Input or InputOutput variable of complex data
type, typically a list of some other data type (but more complex constructions are of course supported too),
which is ‘marked’ at design time as the formal multiple instance input variable. When the task is instantiated at
runtime, that variable’s data is split by the YAWL Engine into a number of logically distinct data values. The
Engine then uses those values to instantiate a number of work items (task instances), one for each distinct
data value, assigning that value to the bound task-level variable (any other task-level variables have their
data assigned to them in the usual way). When the MI task completes, it gathers all the individual pieces of
data from the formal input variable of each task instance and reconstructs the complex type variable so that
it can be mapped back to a net-level variable (usually, but not necessarily, the same one that the data was
mapped from).

To illustrate the operation of MI tasks, with particular emphasis on the data perspective, we will use the
“List Builder” specification shown in Figure 4.35, which begins by compiling an ‘order’ – a list of book
titles. It then creates a number of MI task instances, one for each book title in the list of books. Once all the
MI task instances complete, the updated list is recomposed and shown in the final task.

86 CHAPTER 4. THE EDITOR

Figure 4.35: Example specification with a Multiple Instance Task

To prepare this specification, place two atomic tasks and one MI task onto the canvas, and join then with
flows as shown in Figure 4.35. Now, we need to define a complex data type to store the entire book or-
der. Select the Data Definitions property in the Specifications section of the Properties Pane, and enter the
following two complex type definitions:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">
<xs:complexType name="BookOrder">

<xs:sequence>
<xs:element name="title" type="xs:string" />
<xs:element name="price" type="xs:double" />
<xs:element name="inStock" type="xs:boolean" />

</xs:sequence>
</xs:complexType>
<xs:complexType name="BookList">

<xs:sequence>
<xs:element maxOccurs="unbounded" name="order" type="BookOrder" />

</xs:sequence>
</xs:complexType>

</xs:schema>

The first defines a complex type called ‘BookOrder’, which is a record with three simple type fields. The sec-
ond defines a complex data type called ‘Booklist’, which consists of an array of one or more elements called
‘order’, of BookOrder type (‘unbounded’ means there is no upper limit on the number of order records
we can include in the book list). Once this is added, we can start populating the data perspective of the
specification:

• Create a net-level data variable called MasterList of type BookList and scope Local (Tip: In the ‘Type’
dropdown, all types are listed alphabetically, case-insensitive). Give the variable this initial value (Tip:
click the Generate button, , to build the ’scaffolding’ for the value):

<order>
<title>YAWL User Manual</title>
<price>0.00</price>
<inStock>false</inStock>

</order>

When entered correctly, the green OK message is shown to denote that it is a valid complex value to
assign to the Masterlist variable of complex type ‘BookList’, since it defines values for the elements
of one BookOrder (see Figure 4.36). It is important that an initial value is provided for this variable,
because our definition of the ‘BookList’ type specifies that it will contain at least one element (that is,
because it doesn’t include a ‘minOccurs=0’ clause). If there was no initial value specified for this type,
the specification would fail schema validation at runtime – in other words, the Engine would reject
the specification.

• Add a decomposition to the first atomic task, and call it ‘Create Book List’. Go to the Decomposition’s
Data Variables property, open the Data Variables Dialog, and drag the net-level MasterList variable to

4.7. THE DATA PERSPECTIVE 87

Figure 4.36: Creating the ’MasterList’ net-level variable

the Decomposition Variables list to create a variable called MasterList of type BookList and scope In-
putOutput (the mappings between the net-level and task-level variables are automatically generated).
Rename the task-level variable ’bookList’ to differentiate it from the net-level variable. This task will
allow a user to add any number of book orders to the master book list.

• Add a decomposition to the other atomic task, and call it ‘Show List’. Add a variable to the decom-
position similarly to the first task, except that its scope should be set to Input, and so only an input
binding will be generated. This task will show the user the results of any data changes done during
the execution of the MI task, thus its variable is input only (meaning that the values are ‘display-only’
for this task).

• Add a decomposition to the MI task and call it ‘Verify List’. To the decomposition, add a variable
called MasterList of type BookList and scope Input & Output by dragging it from the net-level list,
then rename it to ’bookList’ like we did earlier. Notice that for this task, the tool bar at the bottom on
the Decomposition Variables list has a ’Mark as MI’ button, , appears. This button only shows for MI
tasks. Each MI task requires one variable to be marked as the formal MI variable, that is the variable
that will provide a list or set of data values which can be split into individual values for passing to
individual (multiple) instances of the task. Our variable of ’BookList’ type fits that bill.

• With the ’bookList’ Decomposition variable selected, click the ’Mark as MI’ button. Four changes are
immediately visible:

– the variable’s name has changed from ’bookList’ to ’bookList Item’, to signify that each created
task instance will handle one item of the overall book list;

– the variable’s type has changed from ’BookList’ to ’BookOrder’, which is the data type of each
item in the book list;

– the variable row is highlighted blue, to denote that it is the marked MI variable for this task; and

– the ‘arrowhead’ icon on the left side of the variable row has changed to an MI Task icon.

• The input and output parameter mappings for MI tasks are a little different to atomic (single instance)
tasks. In addition to the mappings to pass the initial and final data values between net-level and task-
level, two more queries are required, one which defines how to split the list of values into individual
components, and the other which defines how to join those components back into the composite list.
Fortunately, those additional queries are also generated automatically when you mark a variable as
the MI variable for the task.

88 CHAPTER 4. THE EDITOR

Figure 4.37: Input Binding and Splitting Query generated from the ‘MasterList’ variable

• Let’s review the generated input queries for the formal MI variable. With the ’bookList’ task-level
variable selected, click the ’Input Bindings’ button. Notice that the dialog has an additional input field
for the ‘MI Splitting Query’, which shows the generated query (Figure 4.37). Notice also that for the
Input Binding the entire ‘MasterList’ value is specified, rather than its child content (i.e. there’s no ‘*’
at its end). The MI Splitter Query is an XQuery expression that is used to take the list variable mapped
in and split it into a number of ‘child’ elements, one for each member of the list. In natural language,
the query reads: “for each child element in the list variable, return that element”. In our example, the
generated XQuery is:

for $s in /MasterList/* return <bookList Item>{$s/*}</bookList Item>

The $s part is a query variable – all query variables start with a $ sign followed by one or more charac-
ters ($s is a convention for a loop variable, but other names are, of course, allowed). The return value
for each $s in our query would by default start and end with ‘order’ tags (the name of the element
in the ‘BookList’ date definition); since our variable is called ‘bookList Item’, we have to replace the
‘order’ tags with ‘bookList Item’ tags, so the return value of our XQuery is the contents of the order
({$s/*}), but surrounded by ‘bookList Item’ tags. The final result is a number of ‘bookList Item’ val-
ues, each corresponding to one ‘order’ element in MasterList. Click OK to close the Input Bindings
Dialog.

4.7. THE DATA PERSPECTIVE 89

• Now let’s take a look at the generated output queries for the formal MI variable. With the ’bookList’
Decomposition variable selected, click the ’Output Bindings’ button. Notice that the dialog has an
addition input field for the ‘MI Joining Query’, which shows the generated query (Figure 4.38). In our
example, the generated query puts all the instance query results into a list (in this case, a list of ‘order’
elements) ready for mapping back to the net-level variable. The aggregate query will look exactly like
this in most cases. ($j is used simply to differentiate it from $s in the splitter query, but its name is
unimportant).

• Click OK to close the Output Bindings Dialog, and OK again to close the Data Variables Dialog.

Figure 4.38: Output Binding and Joining Query generated for the ‘MasterList’ variable

• The final requirement is to specify the instance attributes for the MI task. Select the ’Verify List’ task,
then the Task M-I Attributes property. Set minimum instances to 1, maximum instances to 20, threshold
to 5 and ‘static’ instance creation type. These settings mean that between 1 and 20 task instances will
by started from this MI task at runtime (depending on the number of book orders in the book list),
the MI task will complete when 5 instances complete (or when all complete if less than 5 were started)
and new instances may not be dynamically started after task execution begins.

When this specification is executed, it will first allow the user to specify a number of book orders, then will
split the details of each into a corresponding number of MI task instances, one for each order. The price and
availability of each order can be updated within its own task instance. When all (or the threshold) of MI

90 CHAPTER 4. THE EDITOR

Figure 4.39: Update Parameters dialog, ‘Get Quotes’ task

task instances have completed, their data will be aggregated back into the list for display in the third and
final task.

For a second example, consider a process that raises a purchase order to purchase a particular product. The
business rules for this process require that at least three quotes are needed for any purchase, from which
one is chosen to fill the order. A multiple instance task called Get Quotes is used to gather the product quotes
from suppliers. The Data Variable dialog for the Get Quotes task can be seen in Figure 4.39.

Figure 4.40: Instance Detail dialog for the ‘Get Quotes’ MI task

The task has two variables defined: ‘PONumber’ (the purchase order number) and ‘Suppliers Item’ (the
details of a single supplier). Notice that ‘PONumber’ is defined as Input Only, and is mapped from the
net-level variable of the same name – this means that the purchase order number will be displayed within
each of the work items created from the MI task. Notice also that while a list of Suppliers is mapped in
from a net-level variable, the marked MI variable maps to a single supplier – one for each task to be created.
The MI queries for the task can be seen in Figure 4.40, and are very similar to those generated in our first
example.

When the instance creation type is set to dynamic, then new instances of the MI task may be created at

4.8. THE RESOURCE PERSPECTIVE 91

runtime after the task execution has begun and split into its instances. There is a button on the default worklist
handler to accommodate this (see Chapter 6), which will be enabled for dynamic MI tasks until such time
as the maximum instances bound has been met.

A more complex example of MI Task, which involves mapping the resulting data from the task back to a
different net-level variable than the one that supplied the MI data to the task, can be found at the end of
Chapter 5.

4.8 The Resource Perspective

The resource perspective allows you to allocate available resources to tasks, specify rules that should be
used for those allocations, place certain constraints on who may or may not start a task, assign certain task
privileges to resources, and much more. To enable the resource perspective in the Editor, a valid connection
to the YAWL Resource Service must first be established (see Section 4.10 for more details).

Once a connection with the Resource Service has been established, any manual atomic task with a decom-
position (a task is manual by default, and only becomes automated when explicitly checked as automated
in the Properties Pane) can be allocated resources via the Resourcing property in the Task section of the
Properties Pane. Selecting this property will launch the Resourcing Dialog (Figure 4.41).

Figure 4.41: Resourcing Dialog, Primary Resources tab

92 CHAPTER 4. THE EDITOR

A task may be allocated both human (i.e. a person) and non-human (e.g. rooms, vehicles, equipment, materi-
als, etc.) resources. Further, resources are divided into primary and secondary resources. Primary resources
are human resources that own a work list, so that allocating a task to a primary resource means that a work
item (i.e. a runtime instantiation of the task) will (potentially) appear on that resource’s work list. Secondary
resources consist of both human and non-human resources, and are those resources that are required to as-
sist in performing the work of the task, but do not manage the task directly (as the primary resource does).
Thus, each manually resourced task, when executed, will have exactly one primary resource, and zero or
more secondary resources.

To summarise:

• Human secondary resources don’t see the work item on their work list.

• Non-human secondary resources don’t have a worklist.

• A human resource may be a primary resource for some work items and a secondary resource for
others.

• A non-human resource can never be a primary resource.

At runtime, when a work item is started, all of its allocated secondary resources (if any) are marked busy.
When a work item is completed or cancelled, all of its busy secondary resources are released. All busy and
release events are stored in the process logs. If a secondary resource is not available when a work item start
is actioned, the work item may start anyway or may be blocked from starting, depending on a configuration
setting (see Chapter 6 for more details).

The following sections describe how to specify resourcing requirements for a task using the Resourcing
dialog.

4.8.1 Primary Resources Tab

For the majority of tasks, the Primary Resources tab of the Resourcing Dialog will be the only tab that needs
to be populated. The first decision to be made is to determine the interaction strategy for work items of
the selected task. There are three interaction points: offer, allocation, and start, and each interaction point
requires a decision to be made on whether it will be User or System processed.

The Primary Resources tab comprises three sections, one for each interaction point.

Offer Interaction

If we choose that work items are to be Offered by the System (by selecting the ‘Enable System Offer’ check
box in the Offer section of the tab), then we can specify the primary resources that will automatically be
offered work items of the task at runtime. If the check box is not selected – a user initiated offer – at runtime
an Administrator will need to manually choose the resource(s) to offer the work item to.

For a System offer, we can specify an initial set of primary resources (called the distribution set) that will be
offered work items of the selected task at runtime by the System. The distribution set may consist of any
number of participants and/or roles2.

To add participants, click the Add (+) button on the toolbar under the Participants list. A dialog showing the
complete list of all participants known to the Resource Service is displayed, from which selections may be
made (Figure 4.42). Multiple participants may be selected concurrently. Also, you can quickly filter the list
be typing characters into the ‘Filter’ field at the top of the dialog – only those names that contain the same
sequence of letters as those typed will be shown in the list. Click OK to add the selections to the Participants
list on the underlying tab. Roles may be added in the same way. To remove selections, select one or more
from the list then click the remove (–) button on the toolbar.

2A role is essentially a set of participants.

4.8. THE RESOURCE PERSPECTIVE 93

Figure 4.42: All Participants selection dialog

In the Net Parameters section, you may nominate one or more net-level variables that at runtime will contain
a value of either the userid of a participant or the name of a role to be added to the distribution set. This
is known as deferred allocation. All net-level variables that are of string type will be available for addition to
the Net Parameters list. To select a net-level variable to use for deferred allocation, click the Add (+) button
on the toolbar under the Net Parameters list. A small dialog will appear (Figure 4.43) that displays the list
of appropriate net-level variables, from which one may be selected. Then, specify in the ‘Will refer to’ panel
whether at runtime the variable’s value will refer to a Participant’s userid, or to a Role’s name. Click OK to
save the selection.

Figure 4.43: Add Net Parameter dialog

In the Filters section we can filter the distribution set of participants, roles and net parameters that have been
described above. Filtering can be done over capabilities, positions and/or organisational groups, so that for
example any participants in the distribution set that do not hold a specified capability will be discarded
from the set.

To set a capability filter, click the Edit button, , on the top-right of the Capability Filter panel. The Ad-
d/Edit Filter dialog is shown which consists of two panels, a list of all the Capabilities known to the
Resource Service, and a panel for composing Filter Expressions (Figure 4.44). A filter expression may be
composed by first double-clicking on a Capability from the list (which will copy it to the expression panel).
Composite expressions can be formed using the buttons on the bottom toolbar:

• Logical AND () – both sides must be true

94 CHAPTER 4. THE EDITOR

• Logical OR () – at least one side must be true

• Add Net Parameter () – insert a net parameter (see below)

• Undo () – delete the last entered capability or logical operator

• Remove () – clear the entire expression

Figure 4.44: Capability Filter dialog

For example, the expression in Figure 4.44 will match only those participants in the distribution set that
have a Bachelor’s degree in SCLM and English language skills specified in their capability set.

The Org Structure filter works in a similar way, except that you may specify expressions based on Org
Groups and/or Positions that appear in the organisation structure managed by the Resource Service (Fig-
ure 4.45). If both types are specified, they both must be true for a participant to be retained in the distribution
set. Finally, if both a Capability and an Org Structure filter is specified, then all expressions must be true for
a participant to remain in the distribution set.

All three types of filter expressions allow for the insertion of net parameters, which will be replaced with
the runtime value of the parameter when the expression is evaluated. To insert a net parameter, click the
icon, which will display a dialog from which you can choose the relevant parameter. Click OK to insert the
parameter into the current expression, where it will appear as the name of the parameter wrapped in ${. . .}.
For example, if the selected net parameter is named “LanguageCapability” it will appear in the expression
as ${LanguageCapability}.
The final part in the Offer section of the Primary Resources tab is the Constraints section. Here you can:

• allow the work items of the selected task to be offered only to participants who are members of the
specified distribution set and have previously completed work item(s) of another task (as specified) in
the current process instance (this is referred to as the ‘familiar task’ pattern). To do so, select “Choose
completer(s) of task:” then choose the previously completed task from the dropdown list.

• prevent the work items of the selected task from being offered to participants who are members of the
specified distribution set and have previously completed work items of another task (as specified) in
the current process instance (this is referred to as the ‘separation of duties’ or ‘four-eyes’ pattern). To
do so, select “Do not choose completer(s) of task:” then choose the previously completed task from
the dropdown list.

4.8. THE RESOURCE PERSPECTIVE 95

Figure 4.45: Org Structure Filter dialog

The dropdown list will contain all tasks that precede the current task (i.e. the one we are setting resources
for) in the specification’s control-flow, including those in any previous sub-nets, that were handled by the
Resource Service (the Default Worklist). Of course, if you choose to specify both constraints for a task, the
choices are mutually exclusive, and you will be prevented from choosing the same task for both constraints.

Allocate Interaction

If we choose that work items are to be Allocated by the System (by selecting the ‘Enable System Allocation’
check box in the Allocate section of the tab), we can specify how work items will be allocated to a particular
participant, that is we can select the allocation strategy from the dropdown list that will be used to choose
a single participant to be allocated a work item from the set of participants offered the work item. If the
check box is not selected – a user initiated allocation – at runtime any participant who has been offered the
work item can manually choose whether to commit to being responsible for the performance of the work
item (i.e. to allocate the work item to themselves).

The available allocation strategies are:

• Round Robin (by time): chooses the participant in the set who has not completed a task instance for
the longest time;

• Round Robin (by Allocation time): chooses the participant in the set who has not been allocated a task
instance for the longest time;

• Round Robin (by least frequency): chooses the participant in the set who has been allocated an instance
of this task the least number of times in the past;

• Round Robin (by experience): chooses the participant in the set who has been allocated an instance of
this task the most number of times in the past;

• Fastest to Allocate: chooses the participant in the set who, on average, has recorded the shortest time
from being offered an instance of this task to allocating it to themselves.

96 CHAPTER 4. THE EDITOR

• Fastest to Start: chooses the participant in the set who, on average, has recorded the shortest time from
being allocated an instance of this task to starting it themselves.

• Fastest to Complete: chooses the participant in the set who, on average, has recorded the shortest time
from starting an instance of this task to completing it.

• Fastest Resource: chooses the participant in the set who, on average, has recorded the shortest time
from being offered an instance of this task to completing it.

• Random Choice: randomly chooses a participant from the set (the default); and

• Shortest Queue: chooses the participant in the set who has the least number of task instances currently
in their work queue.

Developers can ‘plug-in’ new allocators and make them available both at design time and at runtime; see
the YAWL Technical Manual for details.

Start Interaction

If we choose that work items are to be Started by the System (by selecting the ‘Enable System Start’ check box
in the Start section of the tab), then the work item, once it is allocated to a participant, will be immediately
started. If the check box is not selected – a user initiated start – then the user who has been allocated the
work item will choose to manually start working on it at a time of their choosing.

4.8.2 Secondary Resources Tab

On the Secondary Resources Tab, the set of secondary resources that are needed to assist in the successful
performance of the task may optionally be specified. Resources may be selected in each of the four categories
by clicking the Add (+) button on the toolbar under each list. Individual participants and/or ‘assets’ (non-
human resources) may be chosen at most once, while roles and categories (i.e. of non-human resources) may
be selected more than once. For example, the selected resources in Figure 4.46 include two entries for the
role ‘Surgical Nurse’, meaning that two nurses are required.

A category of non-human resources provides a similar relation to that of a role to participants – it is a
grouping of resources. Each category may also have listed a number of subcategories. Some examples may
be:

• office machines denotes any non-human resource in the office machines category, including all those
listed in any subcategories.

• office machines -> copiers denotes those non-human resources in the ‘copiers’ subcategory of the office
machines category.

• office machines -> no category denotes those non-human resources in the office machines category that
are not further subcategorised.

If a participant chosen as a secondary resource also becomes the primary resource for a task, then their
demarcation as primary resource takes precedence.

4.8.3 Task Privileges Tab

Participant-Task privileges (i.e. privileges that apply only for this task) may be set on the Task Privileges
Tab. For example, we can specify here whether participants are allowed to suspend the execution of work
items of the selected task, or to skip them, and so on.

Individual privileges may be set by selecting them (i.e. checking their check box). You may further restrict a
privilege to individual participants and/or roles by first checking the Restrict Privilege box for the relevant

4.8. THE RESOURCE PERSPECTIVE 97

Figure 4.46: Resourcing Dialog, Secondary Resources tab

privilege, then adding participants and/or roles as desired. If a privilege is allowed but not restricted, it
means that all participants and roles are granted that privilege for the selected task.

For example, Figure 4.47 shows that the “Allow work item reallocation with retained state” privilege is
granted to any participant who performs an instance of this task, while the “Allow work item to be piled”
privilege is also granted, but restricted to an individual participant and to members of a particular role.
Piling means that, if a participant chooses to pile an instance of the task at runtime, that participant will
be automatically allocated that instance and all future instances of the task for all future instances of the process
containing the task, until such time as piling is turned off for that task by the participant or an administrator.

More details on resource allocation and authorisation can be found in Chapter 6.

That completes the review of the three perspectives, control-flow, data and resource, and how they are
supported in the Editor. The following sections provide details of other Editor features.

98 CHAPTER 4. THE EDITOR

Figure 4.47: Resourcing Dialog, Task Privileges tab

4.9 The Preferences Dialog

The Preferences dialog co-locates the default settings for a number of system-wide properties. The dialog
can be accessed by clicking on the File Menu and choosing Preferences. . . , and is shown in Figure 4.48. (Tip:
You can also open the Preferences dialog by clicking on either of the connection indicators on the left of the
status bar.

The dialog is divided into five panes, which can be selected from the list on the left:

• Connections: The Connections pane is used to set parameters for connecting to a running YAWL
Engine and Resource Service (see Section 4.10).

• Analysis: The Analysis pane is used to set parameters applicable to the Verification Analysis feature
of the Editor (explained in detail in Section 4.11).

• File Paths: The File Paths pane is used to set the directories for the location of user-defined task icons
(Section 4.5.4) and the WofYAWL analysis tool (Section 4.11), and the files that contain definitions for
User-Defined Extended Attributes (Section 4.18).

• Save Options: The Save Options pane is used to set the various parameters involved when saving a
specification to disk file (cf. Section 4.3.3). It also contains one additional option: Reload most recent

4.10. CONNECTIONS 99

Figure 4.48: The Preferences Dialog, Defaults pane shown

specification on startup. When selected, the specification that was opened in the Editor when it last
closed will be reopened next time you start the Editor.

• Defaults: The Defaults pane is where parameters for default net background colour, element fill colour
and label font are set. This pane also provides the following two preferences:

– Show Description panel in properties pane: When checked, a description of the selected prop-
erty appears at the bottom of the Properties Pane. Uncheck this option to hide the description
panel.

– Check for updates when Editor starts: When checked, each time the Editor starts it will check to
see if there are any new updates available for the Editor and, if there are, will display the details
in a dialog with options for downloading and updating (see Section 4.20 for details on checking
for updates). Uncheck this option to not have this check occur each time the Editor starts.

4.10 Connections

4.10.1 Connecting to the YAWL Engine and Resource Service

Why connect to the YAWL Engine? At design time, each atomic task in a YAWL specification must be
associated with a ‘service’ that will be responsible for performing the work of the task at runtime. If you
do not explicitly specify a service for a task, the task will be assigned to the Default Worklist Handler, which
by default is provided as part of the Resource Service. If you want to associate a task with a service other
than the Default Worklist Handler, you can make the appropriate choice from a list in the Decomposition’s
Custom Service property (see the following section). The Editor populates the list of available services by

100 CHAPTER 4. THE EDITOR

making a call to a running YAWL Engine, which returns the list of services currently registered with it.
Before this can occur, the Editor must first establish a valid connection to a running Engine.

Why connect to the Resource Service? To use the organisational data managed by the Resource Service,
for example to assign tasks to Participants or Roles, a connection between the Editor and the Resource Ser-
vice needs to be established. The Editor populates the Resources Dialog with all the necessary organisational
data needed.

On Editor startup, a connection to a running Engine and Resource Service is attempted. If successful, the
connection icon at the left of the status bar will turn green (the left icon represents the Engine connection, the
right icon the Resource Service connection). If unsuccessful (perhaps because the Engine is not running, or
the connection parameters are incorrect) the connection icon(s) will show red. After the Editor has started,
an connection parameters may be updated via the Preferences Dialog.

To establish a connection with a running YAWL Engine or Resource Service, or to change the connection
parameters:

1. Click the File Menu and choose Preferences

2. On the Preferences Dialog, choose ‘Connections’ from the list on the left (Figure 4.49). Here you can
specify the host name (default: localhost) and port (default: 8080) that represent the locations of the
Engine and Resource Service. Most times the defaults are sufficient, but may be changed if the Engine
or Resource Service are installed remotely, or if the port needs to be changed because the default
port was already in use. You may also specify an alternate user name and/or password to use for
the connection. Note that the user must have administrator privileges. A default user editor with
password yEditor are pre-installed for use.

Figure 4.49: Preferences Dialog, Connections panel

4.11. SPECIFICATION ANALYSIS 101

For convenience, a Test Connections button is provided, which will allow you to test the connection
using the supplied parameters before you commit them. Click OK to finalise the connection settings.

4.10.2 Connecting a Decomposition to a registered YAWL Service

Each task decomposition within a workflow must be associated with a custom YAWL service that has been
registered with the YAWL Engine. By associating a task decomposition with a custom service, all task
instances based on that decomposition will be passed to that custom service at runtime for processing – that
is, the custom service is responsible for performing the work of the task instance.

For example, a decomposition may be set up to place an order with an external company. Upon execution of
any task using this decomposition, data could be transmitted via a Web Service invocation to this company.

To have a decomposition invoke custom YAWL service, click on a task with the decomposition, then select
the Custom Service property in the Decomposition section of the Properties Pane. From the dropdown list,
choose the desired custom service for this decomposition.

If the Editor is connected to a valid running YAWL Engine instance, the Custom Service dropdown list will
contain entries for all custom YAWL services the engine has registered. The Resource Service is listed as
the ‘Default Worklist Handler’, and is the service assigned to the decomposition by default (i.e. unless you
change it). If there is currently no Engine connection, only the Default Worklist (of the Resource Service)
will be available.

When you select a YAWL Service, the Editor will query the running engine for the mandatory input and out-
put variables required by the service (if any), and will populate the decomposition variables of the selected
task with those variables. Core custom services that are supplied with the engine include one for RPC-Style
Web Service Invocation (WSInvoker Service), and one for supporting flexibility and exception handling for
YAWL processes (Worklet Service). Optional services include an SMS handler, a digital signature service
and a email sender service.

4.11 Specification Analysis

Verification of specifications for the engine only determines whether the engine will be able to successfully
load and begin execution of the specification. In contrast, the analysis tool can be used to test for deeper
issues in the specification.

The analysis toolbar button, , or the matching Analyse menu item under the File menu allows work-
flow designers to analyse their specifications. A number of potential problems with a workflow can be
automatically spotted with analysis. Examples include spotting potential deadlock situations, unnecessary
cancellation set members, and unnecessary or-join decorators (at run-time, or-joins require significant pro-
cessing effort, and should be removed or replaced with other join types if they are not actually needed).

A configuration dialog for specification analysis is available in the Preferences Dialog via the File, Preferences
(see Figure 4.50). Note that many of the options are disabled by default since they are resource intensive
and may take some time to complete for large and/or complex workflows. It is recommended that analy-
sis of such specifications not be done incrementally, but rather at planned checkpoints during specification
development.

Because analysis make take a long time and is very resource intensive, it may appear that the Editor has
frozen during an analysis (although it is very unlikely that this will actually be the case). To provide some
feedback about the progress of the analysis, a dialog will appear which shows updates and messages (see
Figure 4.51). At any time, you may click the ‘Stop’ button in the dialog to abort the analysis. The dialog
also includes a checkbox that, when checked, will keep the dialog open after the analysis completes so that
messages may be noted. This functionality can also be controlled via a setting in the Analysis preferences
(see Figure 4.50).

If the optional YAWL specification analysis utility, wofyawl.exe, is supplied in the same directory as the
Editor, an extra set of options will be enabled in this dialog, allowing more analysis options than those

102 CHAPTER 4. THE EDITOR

Figure 4.50: Preferences Dialog, Analysis panel

Figure 4.51: Analysis progress dialog

supplied by default. The utility must be compiled for specific architectures3. The current version of the
Editor needs version 0.4 of the utility.

4.11.1 Verification Analysis Explained

This section provides a brief overview of verification analysis in YAWL. Verification is concerned with the
design time detection of certain undesirable characteristics in process models.

3WofYAWL is currently only available for Windows environments.

4.12. AUTOMATED TASKS 103

Extensive research has been conducted in the area of workflow verification. One of the pioneers of this work
is Wil van der Aalst. He formally defined the notion of soundness as a correctness notion for workflow nets.
This class of Petri nets, which does not support OR-splits/joins, Multiple Instance Tasks and cancellation
regions, forms a predecessor of YAWL. Informally speaking a workflow is sound iff [4]:

• The net has the option to complete. That means that from every reachable state the final state, where
there is a single token in the output condition, can be reached.

• The net has proper completion. This means that when the output condition is marked (i.e. has a token)
there are no other tokens anywhere else in the net.

• The net has no dead tasks. These are tasks that cannot be executed in any scenario.

For YAWL, the notion of weak soundness was introduced as it can be theoretically proven that soundness
is not decidable [24]. For a finite state space, we can simply try and check all reachable states, but this is
obviously not possible when this state space is very large or infinite. In those cases, we can check whether
it is possible to reach the final state from the initial state. Hence, the question becomes does a scenario exist
where we reach the final state?

The richer concepts offered by YAWL also introduce additional correctness notions. For example, an analyst
may have used an OR-join where an XOR-join or an AND-join could have been used. This is not desirable
for computational reasons, but also because it makes the process model harder to understand. Hence, the
YAWL environment will check whether all OR-joins are immutable. Another correctness notion is that of
irreducible cancellation regions. Here it is checked whether certain conditions or tasks can be removed from a
cancellation region as they will never contain a token or will never be active when the associated cancellation
task executes.

The YAWL editor offers two different approaches to automated verification. One approach [24] is based on
the theory of Reset nets (this is built into the Editor). The other approach [22] uses Petri net theory and in
particular, the concept of transition invariants. For this latter approach the program wofYAWL is to be used.
These approaches are different in that there are workflow specifications where one of them can pick up an
error which the other approach cannot.

In the Analysis panel of the Preferences Dialog you can choose what type of verification the YAWL editor
needs to perform. As some forms of verification may require quite a bit of time it is important to choose
the right approach and generally speaking, it is probably best not to verify every intermediate version of a
specification.

The screen shot shown in Figure 4.50 shows the options one can choose for the analysis based on Reset
nets. This form of analysis supports the use of reduction rules. YAWL reduction rules can be applied to
the net and Reset net reduction rules can be applied to the Reset net that results from the mapping of a
YAWL net. The application of these reduction strategies may significantly reduce the workflow that needs
to be analysed, hence it may significantly reduce the time that verification takes. Note that there is overhead
associated with performing the reductions themselves. Also worth mentioning is that the soundness check
is supported for workflows with a finite state space. The editor caps the state space at a certain number of
states (via the ‘Maximum Markings’ setting, by default 5000) and tries to construct the reachability graph
for the workflow. If the upper bound is not exceeded the soundness of the workflow can be determined
with certainty.

Refer to [22] for a detailed explanation of the concepts behind the wofYAWL approach to verification.

4.12 Automated Tasks

Any atomic task in YAWL that is associated with the Resource Service (i.e. the default association if the task
is not explicitly associated with another service) can have its decomposition defined as manual or automated.
A task with a manual decomposition is a task that is intended to be executed by a human resource, e.g.
a participant in the Resource Service’s organisational model. A task with an automated decomposition
is a task that is not offered to any resource but is executed by the system. This type of task can be used

104 CHAPTER 4. THE EDITOR

to manipulate the content of net variables, from simple data assignments to complex reports generation.
Alternately it may be associated with a codelet – a discrete piece of code that is executed, optionally using
the input variables of the task, and assigning any results to the chosen output variables of the task.

Both task types are handled by the Resource Service, but the behaviour of an automated task differs as
follows:

• on enablement, it is automatically checked out of the engine (thus having priority over manual tasks
in a deferred choice) and its input parameters are parsed;

• if a codelet has been specified, it will be executed using the task’s variables as required; then

• it is automatically checked in and its output variables are mapped back to the corresponding net
variables.

A task is designated as manual by default, but can be set as automated by selecting the ‘Automated’ property
in the Decomposition section of the Properties Pane. When the Automated checkbox is checked, the task will
display an automated indicator, and the Task ‘Resourcing’ property will be disabled (since human resources
cannot be assigned to automated tasks).

Data manipulation can be achieved by using the task’s variables and their Input and Output bindings.
Bindings are generally used to copy the content of a net variable to a task variable and back again, but they
may also contain an XQuery expression that uses static values, or the values of other variables, to copy data
between net variables and task variables.

4.12.1 Codelets

Essentially, a codelet is a discrete Java class, managed by the Resource Service, that may be enacted by an
automated task at runtime. When an automated task is enabled during process execution, and it has a
codelet associated with it, the input parameters of the task are passed to the codelet, it is executed, and any
results are passed back to the task via its output parameters.

There are currently eleven codelets available by default in the Editor (additional codelets can be added using
a pluggable interface; see the YAWL Technical Manual for directions on how to add user-defined codelets):

• DirectReports: returns a list of userids that report directly to the a specified position name.

• ExampleCodelet: a simple example designed to demonstrate the usage of codelets.

• ItemMetaData: extracts and returns certain work item metadata.

• ParticipantInfo: gets properties of a participant with the given user id.

• XQueryEvaluator: accepts an XQuery as an input parameter, evaluates it (using other input parame-
ters as required by the XQuery), and produces the result to an output parameter.

• RandomWait: accepts a time unit parameter (‘H’, ‘M’ or ‘S’) and a maximum value (type ‘long’), and
waits for a random amount of time units between zero and the maximum value.

• ShellExecution: accepts an input parameter containing a command line of an external program, and
runs it, waiting for it to complete and returning the result (if any) via an output parameter.

• SupervisorInfo: accepts the userid of a user and returns the userid of that user’s supervisor (based on
the installed organisational data model - see Chapter 6 for more information).

• TaskCompleterInfo: gets the name and userid of the participant who completed a specified atomic
task in the current case.

• UsersWithPosition: gets the userids of the users that hold a specified position name.

• UsersWithRole: gets the userids of the users that perform a specified role name.

4.13. TASK TIMERS 105

Figure 4.52: The Set Codelet dialog

To associate a codelet with a task decomposition, first mark the decomposition as automated by selecting the
Decomposition Automated property and checking the box. When checked, the Codelet property is enabled;
selecting that property opens the Set Codelet for Automated Decomposition dialog, listing the available codelets
(Figure 4.52). Note that a valid connection to the Resource Service is required for this list to be populated
with codelets (see Section 4.10). The dialog lists the available codelets, together with a description of what
each one does and the task variables required to successfully execute it. For example, if ExampleCodelet is
chosen, the automated task requires 3 variables to be created: input variables ‘a’ and ‘b’, and output variable
‘c’ (all of type ‘long’). These variables are automatically added to the task decomposition when the codelet
is selected for a task – at runtime, if the required variables values are not present, the codelet will be unable
to successfully complete (the task will still complete successfully, however).

The codelet repository has been designed as ‘pluggable’, so that designers and developers can easily add
new codelets to perform various operations, which will immediately be available to process designers via
the dialog above, as long as there is a valid connection to the Resource Service.

4.13 Task Timers

Any atomic task can be assigned a timer behaviour. To do so, select the Timer property in the Task section
of the Properties Pane. The dialog in Figure 4.53 will appear.

From this dialog it is possible to set an activation type (when the timer should begin) and an expiration
value for the timer. The timer can be activated either when a task is enabled (i.e. is offered or allocated) or
when it starts. These have different meanings according to the type of task – manual vs. automated.

4.13.1 Activation on enablement

• In the case of a manual task, as soon as the task is enabled, the timer begins and it remains live so
long as the specified expiry time is not reached. During this time frame, the task will follow the

106 CHAPTER 4. THE EDITOR

Figure 4.53: Timer Dialog

normal resource assignment policy. In other words, it will be offered and can be allocated and started.
Once the timer expires, the task instance will complete no matter what its current status is (offered,
allocated, started). A possible danger of this behaviour is that a work item might expire while being
edited by a user, in which case any modifications the user makes after that time are lost. The default
YAWL worklist shows a “time until expiry” value for each timed task.

• In the case of an automated task, the timer works as a delay, i.e. the automatic execution of the task
instance created by an automated task is delayed until the specified expiry time is reached. Once the
timer expires, the task is immediately executed and completed.

4.13.2 Activation on starting

• In case of a manual task, the timer begins only when the task has started. Therefore, the task will be
first offered, then allocated, and once it is started the timer begins. Again, there is a risk of the timer
expiring while the task is being edited by a user.

• This option is does not apply for an automated task.

4.13.3 Expiry value

The expiry value of the timer specifies for how long the timer will live after being activated. Expiry values
can be expressed in either of two ways:

• Using a specific date and time, which means the timer will expire at the specified moment. To set a
specific date and time, choose the ‘At exactly’ radio button in the ‘Expires’ section the Set Timer dialog
(Figure 4.53) and enter the required values. Care should be taken when setting a specific time value for
timers – if it happens that the specified value is earlier than the moment the task is actually enabled or
started (depending on when it is set to activate), then the YAWL Engine will recognise that the timer
has already expired and immediately complete the work item before it has a chance to appear on a
worklist.

• Using a Duration value. A Duration is one of the built-in simple XML Schema data types, and is
used to represent a period of time. When a Duration type is used as a timer expiry value, the timer

4.13. TASK TIMERS 107

will expire exactly when that period of time has passed since the work item was enabled or started
(depending on when it is set to activate). To set a specific duration, choose the ‘After duration’ radio
button in the ‘Expires’ section the Set Timer dialog (Figure 4.53) and enter the required value in the
six ‘spin’ fields, representing from right-to-left, seconds, minutes, hours, days, months and years (Tip:
hover the mouse over each field to see the unit of time it represents). Care should be taken when
specifying a duration that includes a ‘months’ value, since for example 2 months may mean a different
number of days depending on what month it is started in.

In addition to the methods described above, timer parameters may also be set at runtime via a declared
net-level variable of type YTimerType (a YAWL built-in complex type), so that values can be supplied and
late-bound to a task’s timer settings. To use this deferred approach:

1. Create a net-level variable of type YTimerType.

2. Click on a task, then select its Timer property. Choose the ‘Via variable’ option and select the net-level
variable created in Step 1 (when ‘Via Variable’ is selected, all the options in the ‘Begins’ section are
disabled because those options will now be set within the YTimerType variable).

3. Map the net-level variable to another (previous) task in the process, which will be used to capture the
required values from a user at runtime. Those values will be used to set the timer parameters on the
task selected in Step 2. The values requested are:

• Trigger: when should the timer start? There are two valid trigger values, OnEnabled and OnExe-
cuting.

• Expiry: when should the timer expire? This value can be either a date/time string (for example
12/12/08), which will be interpreted as a specific moment, or as a Duration value, which will be
interpreted as a period of time. A Duration value is expressed in the following form:

PnYnMnDTnHnMnS

All values start with P (for Period) followed by a non-negative number of years, months, days,
then T (for time), followed by a non-negative number of hours, minutes and seconds. The
seconds value can have a decimal point and as many digits following the point as required
(e.g. to specify fractions of a second). Any zero value parts can be omitted. Valid examples:
P1Y4M3DT23H55M1.5S, P2M3D, PT10S.

An example of how a variable of YTimerType appears in a dynamic form at runtime can be seen in Fig-
ure 4.54.

Figure 4.54: Example of a YTimerType variable rendered on a dynamic form

To remove a timer from a task, select the task’s Timer property, select the ‘Never’ option in the ‘Begins’
section of the dialog, then click OK.

108 CHAPTER 4. THE EDITOR

4.14 Document Type – passing files as data

A YAWL built-in complex datatype called YDocumentType can be used to upload, store and download files
of any description for a process instance. To use this feature, declare a net-level variable of YDocumentType
and then map it to and from task-level variables of the same type in the usual way (cf. Section 4.7.2). At
runtime, users will be able to upload and download files that will be stored as variables in the process
instance (Figure 4.55).

Figure 4.55: Example of a YDocumentType variable rendered on a dynamic form

At runtime, when a process instance completes, the file can either be archived or removed from the store, de-
pending on a configuration setting in the DocumentStore service (cf. Section 6.1). Note that the DocumentStore
service needs to be available at runtime to support this feature (see Sections 2.4.3 & 9.1).

4.15 Custom Forms

When a task is associated with the default worklist handler (i.e. the Resource Service), then at runtime the
data within the task instance may be selected for viewing and/or updating. By default, the Resource Service
uses a built in “dynamic forms” component, which generates appropriate but generic data editing forms
designed for maximum flexibility and that can display data parameters of any type. However, their generic
look and feel may not be appropriate in all cases, for example where an organisation has a standardised set
of forms for their business processes, and would like their web-based forms to match that standard. In such
cases, a Custom Form may be user-defined and associated with a task by specifying a URL to the form. At
runtime for such a task, the Resource Service will package up the task data and send it to the custom form
for display and/or editing (depending on how the form has been defined). On submission of the form by
the user, the data is extracted from the form by the Service and passed back to the task in the same manner
as dynamic forms. Custom forms may be built using any web-based technology, such as JSF, Javascript,
.NET, PHP, or any other browser-based environment that can receive data, use it to populate form fields,
update the data with user inputs, and pass control back to the calling service.

To set a custom form for a task, select the Custom Form property in the Task section of the Properties Pane.
In the dialog that appears, enter the absolute URI of the custom form (see Figure 4.56). To remove a custom
form association, open the dialog and enter a blank URI (i.e. remove the URI from the dialog and click OK).

See the YAWL Technical Manual for information regarding the creation and configuration of custom forms.

4.16 Task Documentation

A task may be annotated with descriptive text that will be viewable on a user’s worklist at runtime. This
text, or documentation, can be used to describe details about each instance of a task.

4.17. CONFIGURABLE LOGGING 109

Figure 4.56: Custom form dialog

To add documentation to a task, select the ‘Documentation’ property from the Task section of the Properties
Pane. A dialog will appear into which the text can be added (Figure 4.57).

Figure 4.57: Set Task Documentation dialog

XQueries that reference net-level variables can be embedded in the text, and are evaluated at runtime when
the task is enabled. For example, the text in Figure 4.57 will resolve to “This claim has high priority” at
runtime, assuming there is a net-level variable called ‘priority’ that has a value of ’high’ when the task is
enabled.

At runtime, the task documentation can be annotated on the fly so that, for example, messages can be passed
between administrators’ and users’ work lists regarding the task.

4.17 Configurable Logging

The YAWL process logging framework keeps a record of all aspects of each process execution, including all
control-flow, resourcing and data aspects, which can later be analysed. As part of the logging framework,
provision is made for configurable logging, that is the ability to log messages (known as Log Predicates) along
with process data during process execution.

Log Predicates may be defined, for each process, that will be logged at the start and completion of each net,
at the start and completion of each work item, and when data values are assigned to and from each net and
task variable. A log predicate can contain any text, and may also contain embedded values describing current

110 CHAPTER 4. THE EDITOR

values for certain aspects of the process. Embedded values take the form ${keyword}, and different sets of
values are available depending on whether the log predicate refers to a net, task or variable.

The available embedded values for a net-level log predicate can be seen in Table 4.2, while those at the
task-level are listed in Table 4.3, and those at the variable-level are listed in Table 4.4.

${now} Current date and time
${date} Current date
${time} Current time
${decomp:name} Name of the net
${decomp:spec:name} Name of the specification that contains the net
${decomp:inputs} Names of any input parameters for the net
${decomp:outputs} Names of any output parameters for the net
${decomp:attribute:attribute name} The value of the named extended attribute

Table 4.2: Available embedded values for net-level log predicates

${now} Current date and time
${date} Current date
${time} Current time
${spec:name} Name of the specification containing this task
${spec:version} Version of the specification containing this task
${spec:key} Internal identifier of the specification containing this task
${task:id} Runtime identifier of the task
${task:name} Name of the task
${task:decomposition:name} Name of the net that contains the task
${item:id} Runtime identifier of the work item
${item:handlingservice:name} Name of the service responsible for the work item
${item:handlingservice:uri} URI of the service responsible for the work item
${item:handlingservice:doco} Documentation supplied for the service responsible for the work item
${item:codelet} Name of the codelet to be executed for the work item (if any)
${item:customform} URI of the custom form to be displayed for the work item (if any)
${item:enabledtime} Date and time the work item was enabled
${item:firedtime} Date and time the work item was fired
${item:startedtime} Date and time the work item was started
${item:status} Current status of the work item
${item:timer:status} Current status of timer set for the work item (if any)
${item:timer:expiry} Expiration time of timer set for the work item (if any)
${item:attribute:attribute name} The value of the named extended attribute
${expression:xquery expression} The evaluated value of the XQuery expression specified. The

expression may reference work item variable data values

Table 4.3: Available embedded values for work item-level log predicates

If the resource service is handling the task, some extra embedded values become available for use within
workitem level log predicates. The resource service will pre-parse the log predicate, replacing the embedded
values it recognises with actual values, before passing the log predicate to the engine for final parsing of the
workitem-level embedded values described above. The available embedded values for tasks handled by
the resource service can be found in Table 4.5. Other custom services may also provide their own custom
embedded values for log predicates – consult the documentation of custom services in the Technical Manual
for details.

Log predicates are optional, and so may be left empty if desired. Net-level log predicates can be added
via the Log Entries property in the Net section of the Properties Pane, while task-level log predicates can
be added via the Log Entries property in the Decomposition section of the Properties Pane. To add a task-
level variable log predicate, open the Data Variables dialog from the Decomposition properties, select the

4.17. CONFIGURABLE LOGGING 111

${now} Current date and time
${date} Current date
${time} Current time
${parameter:name} Name of the variable
${parameter:datatype} Data type of the variable
${parameter:namespace} Data schema namespace of the variable
${parameter:doco} Documentation supplied for the variable
${parameter:usage} Whether the variable is input, output or both
${parameter:ordering} Index of the variable’s order compared to the other task variables
${parameter:decomposition} Name of the decomposition that contains the variable
${parameter:initialvalue} Initial value of the variable (if any)
${parameter:defaultvalue} Default value of the variable (if any)
${parameter:attribute:attribute name} The value of the named extended attribute

Table 4.4: Available embedded values for variable-level log predicates

${participant:name} Name of the participant handling the work item
${participant:userid} Userid of the participant handling the work item
${participant:offeredQueueSize} Number of items in the handling participants offered queue
${participant:allocatedQueueSize} Number of items in the handling participants allocated queue
${participant:startedQueueSize} Number of items in the handling participants started queue
${participant:suspendedQueueSize} Number of items in the handling participants suspended queue
${resource:initiator:offer} Whether the workitem’s offer interaction was initiated by the

system or by a user
${resource:initiator:allocate} Whether the workitem’s allocate interaction was initiated by the

system or by a user
${resource:initiator:start} Whether the workitem’s start interaction was initiated by the

system or by a user
${resource:piler} The name of the participant piling the workitem (if any)
${resource:deallocators} A comma separated list of the names of all participants who have

deallocated the workitem
${resource:allocator} Name of the system-based allocation algorithm used to allocate

the workitem
${resource:roles} A comma separated list of the names of all roles the workitem

was offered to
${resource:dynParams} A comma separated list of the names of all dynamic parameters

used in the offer set evaluation for the workitem
${resource:filters} A comma separated list of the names of all filters used in the offer

set evaluation for the workitem
${resource:constraints} A comma separated list of the names of all constraints used in the

offer set evaluation for the workitem

Table 4.5: Additional resourcing embedded values for work item-level log predicates

112 CHAPTER 4. THE EDITOR

variable then click the Log Entries toolbar button, . In each case, the Log Entries dialog appears where
you can enter log predicates that will be logged when the relevant net, task or variable begins and ends.
Figure 4.58 shows an example at the variable level, indicating that correctly entered embedded keywords
appear green, while incorrect ones appear red (if not corrected, they will not be parsed at runtime but will
appear as literal strings in the logs).

Figure 4.58: Entering variable-level log predicates

4.18 Extended Attributes

The Editor offers a means for defining extended attributes to be associated with task decompositions and
variables. There are a default set of attributes supplied for task decompositions, and a default set for task
variables, the values of which may be set at design time; at runtime, the values (for the most part) will effect
the display parameters of the dynamic form generated by the Resource Service’s default worklist handler
for the work item.

Additionally, designers may add their own extended attribute definitions to the Editor at design time, for
runtime interpretation via custom classes and services. That is, the Engine and/or Resource Service will
interpret and act on any values set for the default extended attributes, while the effects of values set for user-
defined extended attributes are defined by developers of custom services. See Section 4.18.2 for information
on defining your own extended attributes.

4.18.1 The Default Extended Attributes

Table 4.6 lists the default extended attributes for decompositions. For the most part, the attributes affect
the work-item level of the dynamic form displayed (i.e the form itself). Note that where an variable-level
attribute of the same name as a decomposition-level attribute exists, the variable-level attribute takes prece-
dence.

Decomposition Extended Attributes can be updated by selecting the Extended Attributes property in the
Decomposition section of the Properties Pane, then setting the desired values in the dialog that appears (see
Figure 4.59 for an example).

4.18. EXTENDED ATTRIBUTES 113

Attribute Sets Default
Background Alt Colour The background colour of alternating form panels gray
Background Colour The main background colour of the form lighter gray
Font Font family, size, style & colour for labels browser default
Header Font Font family, size, style & colour for headings browser default
Justify Justify text in text fields left
Label Label text for form header task name
Read Only Field values can’t be modified, if true false
Title Title of form Edit Work Item: item id

Table 4.6: Default decomposition-level extended attributes

Table 4.7 lists the default variable level extended attributes. For the most part, the attributes affect a single
variable field on the dynamic form displayed.

Attribute Sets Default
Alert A tailored validation error message auto-generated message
Background Colour The background colour of the field yellow (mandatory);

white (optional)
Blackout Show field blacked out (redacted), if true false
Font The font family, size, style browser default,

& colour for the field & label
Fraction Digits* Number of digits to show after the decimal point none
Hide Hide the field from view, if true false
Hide If Hide the field from view, if the XQuery value evaluates

to true false
Image Above URL for an image to show above the field none
Image Above Align Alignment for image above the field left
Image Below URL for an image to show below the field none
Image Below Align Alignment for image below the field left
Justify Justify text in the field left
Label Text for the field label variable name
Length* Exact number of characters required undefined
Line Above Draw a horizontal line above the field, if true false
Line Below Draw a horizontal line below the field, if true false
Max Exclusive* One less than the upper range of valid values accepted undefined
Max Inclusive* Upper range of the valid values accepted undefined
max Length* Maximum number of characters required undefined
Min Exclusive* One more than the lower range of the valid values accepted undefined
Min Inclusive* Lower range of the valid values accepted undefined
Min Length* Minimum number of characters required undefined
Optional Field does not require a value, if true false
Pattern* Field value must match the value pattern undefined
Read Only Field value can’t be modified, if true false
Skip Validation Don’t validate value against schema, if true false
Text Above Insert given text above the field undefined
Text Below Insert given text below the field undefined
Text Area Render a text area instead of a text field (text fields only)
Tool Tip A tip to show when the mouse hovers over the field auto-generated tooltip
Total Digits* Total number of digits expected (numeric values only) undefined
Whitespace* Normalise whitespace in the given value undefined

Table 4.7: Default variable-level extended attributes

114 CHAPTER 4. THE EDITOR

Variable Extended Attributes can be updated by selecting the Data Variables property in the Decomposition
section of the Properties Pane, selecting the appropriate task-level variable from the Data Variables Dialog
that appears, then clicking the Extended Attributes toolbar button, , and setting the desired values in the
Extended Attributes dialog.

Notes about extended attributes:

• Those attributes marked with an asterisk (*) in Table 4.7 mirror XML Schema facets that may be set for
values as part of the type definition for a field. These facet attributes are only available for simple data
types. If a extended attribute facet has a value, and the type definition also has a value for the facet,
the extended attribute value takes precedence. Note that not all facets make sense for all data types –
where a value is set for an extended attribute that mirrors a facet, and the field in question does not
support that facet, then the value is ignored. Please refer to an XML Schema reference for more infor-
mation about facets and their application to different data types (for example, http://www.w3.org/
TR/xmlschema-2/#rf-facets and http://www.w3schools.com/schema/schema_facets.
asp).

• Values for the text-above, text-below and label attributes may include embedded XQuery/XPath ex-
pressions that reference the work item’s data.

• The Read Only attribute only applies to fields that would otherwise not be read-only. That is, a variable
with usage type Input Only will display as read-only regardless of the value of the Read Only attribute,
so the attribute will only apply to variables of usage types Input & Output or Output Only.

• For attributes that require a URL value, absolute URLs must be used. A simple solution is to create
a subdirectory in the tomcat/webapps directory (called, for example, ‘images’) and place the images
within it. Then, the absolute URL would be, for example, http://localhost:8080/images/
myImage.png (assuming tomcat is installed locally).

• To avoid confusion, care should be taken when overriding the background colour of a field, that the
colour used for validation errors (#FFCCCC), or colours close to it, are not used.

• A mechanism exists for extended attribute values to be set and/or modified at runtime – please see
the Technical Manual for more information.

4.18.2 User-Defined Extended Attributes

User-defined extended attributes are specified in property files, one for decomposition-level attributes and
one for variable-level attributes. By default, the Editor will look for attribute property files in the folder:

<editor_install_path>/attributes/

In that folder, the Editor will look for a file named decomposition.properties for decomposition-level properties,
and a file named variable.properties for variable-level attributes.

However, the property files can be placed in any folder and use any filename – in which case, the location of
the particular property file must be set in the File Paths section of the Preferences dialog (File. . . Preferences).
The Editor will always look for the file in the last folder/filename set (or the default path/filename if never
set).

In the Extended Attribute dialogs, the default attribute set is listed alphabetically in black text, while any
user-defined attributes are listed alphabetically in blue text (case sensitive). The property files can be edited
in any text editor (the YAWL Editor will need to be restarted to pick up any changes). Attributes are defined
as key=value pairs; the key represents the name of the attribute, and the value its type. The available attribute
types are:

• boolean: may be given a value of true or false. Rendered as a checkbox in the Extended Attributes
dialog.

http://www.w3.org/TR/xmlschema-2/#rf-facets
http://www.w3.org/TR/xmlschema-2/#rf-facets
http://www.w3schools.com/schema/schema_facets.asp
http://www.w3schools.com/schema/schema_facets.asp
http://localhost:8080/images/myImage.png
http://localhost:8080/images/myImage.png

4.18. EXTENDED ATTRIBUTES 115

Figure 4.59: Decomposition-level extended attributes dialog

• string: a simple text string. Rendered as a text field.

• color: a colour value. Renders as a text field which shows a hex colour value.

• font: a valid font name. Renders as a text field which shows the font details.

• integer: a valid integer value. Renders as a text field. Invalid entries are ignored.

• double: a valid double value. Renders as a text field. Invalid entries are ignored.

• enumeration: a set of string or numeric values. Renders as a dropdown dialog.

• xquery: a valid XQuery expression.

• text: a long text value.

When the field of an attribute with color, font, xquery or text type is selected, a small ‘Open Dialog’ button
appears on the right-hand side of the field. When clicked, a dialog appropriate to the type will be dis-
played. Enter or select an appropriate value from the dialog, then click OK to save the value to the attribute.
Figure 4.60 shows the dialog that appears for attributes of type font.
The following is an example of a property file that defines the attributes description, help, mode, refresh
and showDetails (comments are indicated by a line starting with #).

#Decomposition Attributes
#Wed May 14 17:35:42 AET 2014
description=xquery
help=string
mode=enumeration{normal,final,pending}
refresh=xquery
showDetails=boolean

116 CHAPTER 4. THE EDITOR

Figure 4.60: Extended attributes font dialog

Only those values that are changed from their defaults will be saved to the specification file. For all types ex-
cept enumeration, the default value is considered to be an empty field. For enumerations, the first listed value
is considered the default. To denote an empty value as the first in an enumerated list, list the enumeration
like this example (i.e with no first value):

mode=enumeration{,normal,final,pending}

Adding Attributes via the Dialog

As an alternative to creating user-defined attributes via a text editor, they can also be added or removed
directly via the Extended Attributes dialog. The tool bar of that dialog has two sets of buttons, the first of
which are buttons for adding and removing user-defined attributes (cf. Figure 4.59).

To add a user-defined attribute, click the add button () and in the dialog that appears add a name and data
type for the new attribute. For enumeration types, a field will appear for you to define the enumeration’s
list of possible values (Figure 4.61). Click OK to save.

To remove a user-defined attribute, select it then click the remove button (). Note that only user-defined
attributes may be removed.

The Extended Attribute Repository

The second set of buttons on the Extended Attributes dialog tool bar allow you to save attribute values to
the repository and later retrieve them for other decompositions and variables.

To add attributes and their values to the repository, click the ‘Add to Repository’ button (), add a label and
description of the values to the dialog that appears, then click OK to save. All of the attributes in the dialog

4.19. CONFIGURABLE YAWL 117

Figure 4.61: Add User-Defined Extended Attribute dialog

that have non-default values will be saved to the repository under the label provided.

To retrieve previously saved values for attributes from the repository, click the ‘Load from Repository’ but-
ton (), select the label for the desired values from the list, then click OK. All of the values previously saved
to the repository under the selected label will be added to the dialog (and will overwrite any existing values
set for those attributes).

Finally, existing attribute-value sets can be removed from the repository at any time by clicking the ‘Remove
from Repository’ button (), selecting the label for the set to remove, then clicking OK.

4.19 Configurable YAWL

A configurable process model is an integrated representation of multiple variants of a same business process
in a given domain, such as multiple variants of an insurance business process operating in different markets.
A configurable process model offers the following benefits over traditional process models:

• eliminates redundancies in a process family,

• fosters standardization and reuse of proven practices,

• enables a clear distinction between commonalities (those parts that are shared by all process variants)
and variants (those parts that are specific to certain process variants) in a process family,

• can be configured to meet specific requirements, such as those of a new organization, product or brand.

The YAWL Editor supports the definition of configurable YAWL (C-YAWL) models via an Editor plugin.
A C-YAWL model is a YAWL model where some tasks are annotated as configurable. These configurable
tasks represent the ‘variable’ parts of the process model, and are distinguished by a thicker border from the
remaining tasks representing commonalities. Let’s have a look at the example C-YAWL model in Figure 4.62.
This model depicts a travel requisition process (you can find it in the YAWL distribution under the folder
C-YAWL models). In this example, all tasks but the task labeled “tau” are configurable.

Configuration is achieved by restricting the behavior of a C-YAWL model. Configurable tasks can be re-
stricted via the notion of ports. A configurable task’s joining behavior is identified by one or more input
ports, whereas its splitting behavior is identified by one or more output ports.

The number of ports for a configurable task depends on the task’s routing behavior:

• AND-split, AND-join and OR-join are each identified by a single port.

• XOR-split and XOR-join are identified by one port for each outgoing/incoming flow.

• an OR-split is identified by a port for each combination of its outgoing flows.

118 CHAPTER 4. THE EDITOR

For example, task “Submit Travel Form for Approval” has two input ports: one from task “tau”, the other
from task “Check and Update Travel Form”, and three output ports: one towards task “Approve Travel
Form Admin”, one towards task “Reject Travel Form” and one towards task “Request for Change”, while
the latter task only has one input port and one output port.

Figure 4.62: A C-YAWL model for travel requisition

To make a task configurable, select it, then from the Plugins menu select Process Configuration > Task >

Set Task Configurable, or click the toolbar button on the Process Configuration toolbar (Tip: to make the
toolbar visible, from the Plugins menu select Toolbars > Process Configuration).

For example, let’s make task “Submit Travel Form for Approval” configurable. Now we are ready to con-
figure this task.

All ports are activated by default. You can configure them by either blocking or hiding them:

• Input ports can be hidden or blocked. Hiding an input port corresponds to making the task silent, i.e.
the task will still be executed but its decomposition will be removed and thus the task won’t have any
observable behavior. Blocking an input port corresponds to inhibiting control to the task via that port,
i.e. it will no longer be possible to execute the task via that port.

• Output ports can only be blocked. This means that the outgoing paths from that task via that port will
be disabled.

Moreover, you can block the cancellation region assigned to a task (this means that the task’s region will
be removed altogether), and restrict the parameters of a multiple instance task. Specifically, you can reduce
the maximum number of allowed instances, increase the minimal number of allowed instances and the
continuation threshold, and change the dynamic creation of instances to static.

The configuration of input ports, output ports, cancellation regions and multiple instance parameters, can
be accessed from the Plugins, and then selecting Process Configuration > Task > Input Ports..., Output
Ports..., etc, or via the corresponding toolbar buttons. Figure 4.63 shows the dialog window for the output
ports configuration of task “Submit Travel Form for Approval”. You can select a single port or multiple
ports by using the Shift or Ctrl keys, and then press the Hide or Block button to configure the selected

4.19. CONFIGURABLE YAWL 119

ports, or Activate to rollback a configuration. It is also possible to set default configuration values for each
port, by pressing the button Set Defaults. Once default configuration values have been assigned to a port,
the button Use Default will become available when selecting that port, and you can configure that port
by using its default value. All configuration settings (including default values) are stored in the YAWL
specification upon saving, so this information will be preserved after closing the model.

Figure 4.63: Configuring the input ports of a task.

Let’s block the output port of task “Submit Travel Form for Approval” towards task “Request for change”,
and let’s make task “Check and Update Travel Form” silent, by hiding its input port. With the first operation
we deny requests for changes after a travel form has been submitted, by blocking the flow into the loop path,
while with the second operation we deny the possibility of checking and updating a travel form, although
in this case we don’t block the flow through the hidden task.

The YAWL Editor can show a preview of the resulting configured net by greying out all model fragments
which have been removed. You can do this from the Plugins menu via Process Configuration > Net >
Preview Process Configuration, or by clicking the Preview Process Configuration button, , from the tool
bar. Figure 4.64 shows the preview of the configuration in our running example. Task “Request for change”
and its input and output arcs have been greyed out, whereas task “Check and Update Travel form” is still in
the model (this task will actually be replaced with a silent task once the configuration has been committed).
To remove a preview, simply click again on the Preview toolbar button.

To commit a configuration you need to press the Apply Process Configuration button, , from the toolbar
or from the Plugins menu Process Configuration > Net > Apply Process Configuration. This operation
generates an individualized YAWL model, i.e. a regular YAWL model where:

• all blocked tasks and cancelation regions are removed,

• tasks attached to a hidden input port are replaced by a silent task bearing label “ tau”,

• the parameters of all configurable multiple instance tasks are restricted according to the configuration
settings,

• all configurable tasks are turned into normal tasks.

Note that since a task can have multiple input ports (e.g. in the case of an XOR-join), those input ports that
are not hidden will not be replaced with a silent task. For more information on how the configuration of
hidden ports work, please refer to the Process Configuration book chapter of the YAWL Book [12].

Figure 4.65 shows the individualized YAWL model for the travel requisition example. Task “Request for
change” and its connecting flows have been removed, whereas task “Check and Update Travel Form” has
been replaced by a silent task labelled “ tau”. If you inspect this task, you will see that it is no longer
associated with a decomposition. Let’s undo the commitment of this configuration to revert its effects. This
can be done simply by pressing again the toggle button Apply Process Configuration on the toolbar.

120 CHAPTER 4. THE EDITOR

Figure 4.64: The preview of a process model configuration.

Figure 4.65: The result of committing a process model configuration.

While hiding a port is a safe operation, blocking a port may lead to behavioural anomalies such as deadlocks.
If we now blocked the input port of the task “Check and Update Travel Form”, we could cause a deadlock
in condition “P3” because if task “Prepare Travel Form Secretary” fired, a token would remain stuck in that

4.19. CONFIGURABLE YAWL 121

condition. So it would be wise to also block the input port of task “Prepare Travel Form Secretary”, so that
“P3” could never get control. The YAWL Editor provides a Configuration Correctness Checker which can be
used to prevent possible behavioral issues already during configuration, by excluding those combinations
of blocked ports that will lead to an unsound individualized YAWL model. In this way you don’t need
to individualize a process model to find out only later that the configuration you used led to an unsound
model.

The Configuration Correctness Checker needs an external tool, namely Wendy [13], which must be located
at the path specified in the Process Configuration Settings, which can be found from the Plugins menu
Process Configuration > Preferences, or by clicking the Preferences button, , on the Process Configuration
toolbar. There are Wendy distributions for Windows 32bit, MacOS and Linux available for download from
the YAWL SourceForge project.

The Configuration Correctness Checker can be enabled at any time from the Plugins menu Process Config-
uration > Net > Check Configuration Correctness, or by clicking the Check Correctness button, , on the
Process Configuration toolbar. This will invoke Wendy to analyse the current model, and the output from
this tool will appear in a pop-up window (see Figure 4.66). This process may take some time depending
on your machine’s characteristics and on the degree of parallelism of your YAWL model (i.e. how many
combinations of tasks there exist that can be executed in interleaved parallelism). However you only have
to run this process once, once you have completed the design of your process and are ready to configure it.
You can also interrupt this process at any time by closing the window.

Figure 4.66: Output from Wendy.

Now launch the Configuration Correctness Checker for the travel requisition process. Once the analysis
has been completed, the YAWL Editor will be able to automatically block or activate further ports in an
interactive way, i.e. as you configure your model. Let’s now block the input port of task “Check and Update
Travel Form”, which was previously just hidden. The Editor will react to that configuration by also blocking
the input port of task “Prepare Travel Form Secretary”, to avoid possible deadlocks in the individualized
model. This is notified to the user via a dialog window.

Figure 4.67 shows the preview of the resulting individualized model. You can see that condition “P3” will
also be removed from the net now, as a result of applying this configuration.

Automatic completion also works when you activate ports that were previously blocked. Try now to activate
the input port of task “Prepare Travel Form Secretary”. Since the input port of “Check and Update Travel
Form” is blocked, a token may again get stuck in “P3”; so the Editor will also activate the latter port.

The following parameters related to C-YAWL models can be customized from the Plugins menu Process
Configuration > Preferences, or by clicking the Preferences button, , on the toolbar:

• Set new elements configurable: new tasks are set as configurable automatically/manually (default
option),

• Preview process automatically: the preview of configured processes is always switched on—the cor-
responding button on the tool bar becomes inactive/the preview can be switched on or off manually

122 CHAPTER 4. THE EDITOR

Figure 4.67: Preview of the configuration after blocking the input port of task “Check and Update Travel Form”

(default),

• Deny blocking input ports: input ports cannot be blocked/can be blocked (default),

• Allow changing default configurations: default configuration values can be changed (default)/cannot
be changed.

For more information on C-YAWL, please refer to the Process Configuration book chapter of the YAWL
Book [12] and go to http://www.processconfiguration.com. For technical details, you can also read
the scientific paper [11].

4.20 Checking for Updates

At any time, you may check to see if there are any updates of the YAWL Editor for downloading and
installing (a valid internet connection is required).

To check for updates, select Help, then Check for Updates. . . from the menu bar. The update server will
be contacted and the latest list of components downloaded, then compared to the installed components
locally (i.e. no information is sent to the upload server). If there are updates available, the Update Information
dialog will appear (Figure 4.68) and display information about the currently installed version and the latest
version. You have three options:

• Cancel Close the dialog and take no further action

• Download Download the updated components to a directory of your choice (a File. . . Save dialog will
appear). You can later apply the updates manually to your installed version of the Editor.

• Download & Restart The updates will be downloaded, your installed version will be automatically
updated, then restarted to pick up the changes.

http://www.processconfiguration.com

4.21. ABOUT DIALOG 123

Figure 4.68: Update Information dialog

When either of the ‘Download’ options are chosen, the downloads will begin and you will see a progress bar
in the update dialog. Note that only the components that are newer than the ones installed are downloaded.
After the restart (if chosen), a message will display regarding the new version.

If there has been a major version update, the entire Editor package will need to be downloaded and the
option to install and restart will be disabled. Instructions will be shown on how to install the new major
release version.

If there are no updates available for your installed version, a message to that effect will appear.

4.21 About Dialog

To view information about the currently installed Editor version, select Help, then About. . . from the menu
bar. The build major version, build number and build data and time will be displayed. The dialog also
provides two web links, one which will take you to the YAWL forum to read or participate in discussion
about YAWL, and the other which will take you to the YAWL issues list, where you can report any issues or
problems with the Editor.

Click anywhere on the About dialog to close it.

124 CHAPTER 4. THE EDITOR

Chapter 5

How to Manipulate Data in YAWL

5.1 Introduction

Compared to most of the existing workflow management systems which use a propriety language for deal-
ing with data, YAWL completely relies on XML-based standards like XPath1 and XQuery2 for data manip-
ulation. This document provides some insights into data manipulation in YAWL, in terms of data visibility
(defining data elements), data transfer (passing data between workflow components and exchanging in-
formation with the environment), data related issues such as data-based conditional routing and handling of
multiple instance data. Readers are assumed to have knowledge of YAWL and its supporting tools: the YAWL
engine (see Chapter 6) and the YAWL editor (see Chapter 4).

5.2 Data Visibility

In YAWL, all data are represented as XML documents. Figure 5.1 depicts an example of a YAWL net speci-
fying a simple trip booking process. The data at the net level are written in an XML document with a root
element named PerformBooking (i.e. the name of the net), while the data at the task level are written in an
XML document for each task.

Next, data elements are stored in variables. There are: net variables for storing data that need to be accessed
and/or updated by tasks in a net, and task variables for storing data that needs to be accessed and/or
updated only within the context of individual execution instances of a task. Note that the task variables of
a composite task are conceptually the net variables of the corresponding subnet.

YAWL applies strong data typing. Data types are defined using XML Schema. The YAWL Editor provides
all XML Schema simple data types for variable definition. These include some basic types such as boolean,
string, double, decimal, long, integer, date (in the format of yyyy-mm-dd) and time (hh:mm:ss). Based on the
above, users may also provide their own XML Schema to define more complex data types. Figure 5.2 shows
the XML schema of a user-defined data type for element “CustInfo” which consists of both customer name
and target start date for the booking trip process depicted in [6].

Data usage (or scope) is also part of a variable definition. There are: input and output variables, input only
or output only variables, and local variables. In general, data are written to input variables and read from
output variables. Local data usage is applicable to net variables only. The local (net) variables are used to
store data that can be manipulated only internally within the scope of the corresponding net.

Finally, a local variable may be assigned an initial value at design time, while an output-only variable may
be assigned a default value at design time. Further details will be given in the next section (5.3).

1XML Path Language (XPath) 1.0. W3C Recommendation, 16 November 1999.
2XQuery 1.0: An XML Query Language. W3C Working Draft, 4 April 2005.

125

126 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

Figure 5.1: A YAWL net “PerformBooking” and its data representation

Figure 5.2: XML Schema of a user-defined data type for “CustInfo”

Note In Chapter 4, Sections 4.7.1 to 4.7.2 illustrate how to define net and task variables in the YAWL Editor.

5.3 Data Transfer

5.3.1 Internal and External Data Transfers

YAWL supports data passing between variables, which can be considered internal data transfer, and data
interaction between a process and its operating environment (i.e. workflow engine, users and web services),

5.3. DATA TRANSFER 127

which can be considered external data transfer.

Internal data transfer is always conducted between nets and their tasks (which themselves may or may not
be composite) using XQueries3. Note that YAWL does not support direct data passing between tasks. This
is because each task variable is local to the task that the variable belongs to, i.e., it is not accessible by other
tasks. Assume task A and task B in net N . To pass data from task A (e.g. variable Va) to task B (e.g. variable
Vb), an appropriate net variable of N (e.g. Vn) must be available to convey data from Va to Vb. In the YAWL
editor, each task can be assigned an input parameter and/or an output parameter (depending on the specified
‘Scope’ type) which define internal data transfer associated with that task. Input Parameters use an XQuery
to extract the required information from a net variable and pass such information to the corresponding
task variable, while output parameters define data passing in the opposite direction. With reference to the
process depicted in Figure 5.1, Figure 5.3 shows an example of passing the customer information from the
net level to the task level (task “Decide”).

Figure 5.3: An example of data transfer from net “PerformBooking” to task “Decide”

External data transfer does not apply to any local variable or any variable of a composite task. This is
because the local variables cannot be observed externally, and the variables of composite tasks serve as
intermediate variables for passing data from the higher level to the lower level of a process and vice versa
(e.g. between a net and the tasks in its subnets). When data are required from the external environment at
run time, either a web form will be generated requesting the data from the user or a custom service will be
invoked that can provide the required data.

5.3.2 Valid and Invalid Data Transfers

To ensure correct data transfer, YAWL defines a set of transfer rules for variables of different data scope.
Each input variable, except those associated with the top-level net (root net), must have data supplied from
the corresponding net variables (which could be a single net variable or an aggregation of any number of net
variables), via an input parameter definition. An input variable of the top-level net gets data supplied from
the environment (e.g. a user input) once an execution of the net is started; a local variable of the top-level
net may be assigned an initial value at design time (data assignment). Each output variable, except those
associated with composite tasks, requests data from the environment once the corresponding net or task is
executed. An output variable associated with a composite task gets data via the net data in its subnet, using
an output parameter definition. Otherwise, output variables are used to supply task data to corresponding
net level variables (in internal data transfers).

3XQuery 1.0: An XML Query Language. W3C Working Draft, 4 April 2005.

128 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

Input and output variables combine scopes. No (internal) data transfers are allowed to local variables of
subnets and no (external) data transfers are allowed between local variables and the external environment.

Note In Chapter 4, Section 4.7.3 illustrates how to pass data between variables in the YAWL Editor. Three
things are worth noting:

1. The YAWL Editor enforces correct data transfers between variables in the parameter definition for
each task. For example, it is not possible to define data passing between local variables, or to set more
than one input/output parameter on a single variable associated with a task.

2. In the YAWL editor, by running specification validation, a user can check whether or not required
data transfers are missing. For example, if an input variable (Vin) of a task (T) does not have any data
mapping specified, a validation message will indicate that problem.

3. When specifying XQueries in the parameter definitions of a task, the YAWL editor may automatically
generate a compatible XQuery or indicate whether a user-defined XQuery has valid or invalid syntax.
The semantics validation of XQueries is performed at run time by the YAWL engine. A semantic error
may result in a Schema Validation Problem and the execution of the process may fail.

5.4 Data-related Issues

5.4.1 Data-based Conditional Routing

When tasks have XOR or OR splits, which branch to choose is determined by conditional expressions asso-
ciated with flows. These conditions are boolean expressions that involve data within the process. The data
may determine the evaluation results of the conditions and therefore influence the operation of the process.

In YAWL, the branching conditions are specified as XPath4 boolean expressions in the split predicates for
tasks with XOR or OR splits. The branches (flows) whose conditions (predicates) evaluate to true will be
executed by the YAWL engine (all true branches for an OR split; the first true branch from an XOR split).
Also, for each task with an XOR or OR split, there is always a default flow that will be taken if none of the
other flow predicates evaluate to true. We consider separately below tasks with XOR splits and the tasks
with OR splits.

As an example, Figure 5.4 shows the XPath expression, which is specified for task “Decide”, for choosing
the branch of “Book Car” in the “PerformBooking” process depicted in Figure 5.1.

For a task with an XOR split, all (conditional) flows are specified in a list, and their predicates are evaluated
in the same order as they are presented in the list. Since an XOR split allows only one flow to be chosen,
when the engine reaches the first flow predicate that evaluates to true, the corresponding flow will be chosen
and the rest of the list will be not be evaluated. However, if the engine reaches the bottom of the list, the
bottom-most flow will always be chosen as the default, and it is not necessary to evaluate the predicate
associated with that flow. Therefore, the default flow of a task with XOR split is similar to the concept of an
“otherwise” clause defined in most programming languages.

For a task with an OR split (e.g. the task “Decide” in Figure 5.4), all flows with their predicates are also
presented in a list. However, an OR split requires that all flows whose predicates evaluate to true are taken.
Therefore, the engine will evaluate all flow predicates, and only if none of them evaluate to true will the
bottom-most flow be taken as the default (despite the false evaluation result of its predicate).

Note In Chapter 4, Section 4.7.4 illustrates how to specify flow predicates for tasks with XOR or OR splits in
the YAWL Editor. Two things are worth noting:

1. Only net variables are allowed to be used in specifying flow predicates. This is because the flow

4XML Path Language (XPath) 1.0. W3C Recommendation, 16 November 1999.

5.4. DATA-RELATED ISSUES 129

Figure 5.4: XPath expression for choosing the branch of “Book Car” at task “Decide”

evaluation for a task with XOR or OR split is conducted after completing the execution of the task,
and therefore the task variables are no longer available.

2. Similarly to the XQuery validation, the syntax validation of XPath expressions can be performed in
the YAWL editor. The semantics validation is however a different matter. XQuery is very flexible on
what is considered to be a valid boolean value:

• An empty condition will evaluate to false (however, the editor’s ‘Split Predicates’ dialog doesnt
allow empty expressions).

• A valid XPath expression to any ‘node’ is treated as true, even if the value of the node is a string
or integer, for example (i.e. testing the node’s existence rather than its value).

• A single boolean value is treated as that value (i.e. ‘true()’ or ‘false()’).

• If it is a single string, then if it is zero length it is treated as false, otherwise it is treated as true.
For example, ‘abc’ and ‘false’ will evaluate to true.

• If it is a single numeric value, then if the value is NaN or zero it is treated as false; otherwise it is
treated as true. For example, -37 and 432 will evaluate to true.

So care should be taken when entering split predicate expressions.

5.4.2 Multiple Instance Data

There are two categories of data associated with multiple instance tasks. One is the task attribute data which
define the maximum and the minimum number of instances allowed as well as the threshold value. The other
is the multiple instance data which are specific to individual execution instances of tasks within a single
workflow case [19]. Below we describe how to handle multiple instance data in YAWL.

YAWL supports both the designated multiple instance tasks and the isolation of data elements between
task instances. However, the handling of multiple instance data is far from trivial. Data at the higher
level needs to be split over the instances and after completion of the instances aggregated to data elements
at the higher level [2]. A set of four XQueries are used to pass multiple instance data between different
levels. These are: the accessor query for manipulating the overall multiple instance data before the unique
values are split out (to individual execution instances); the splitter query for separating the unique values

130 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

from the overall multiple instance data and passing a unique value to each instance; the instance query
for transforming the XML document returned on completion of an instance to a form that is suitable for
aggregation; and the aggregate query for finally generating an overall result and passing the result to the
higher level on completion of the multiple instance task.

In Chapter 4, Section 4.7.6 illustrates how to specify multiple instance data manipulation, e.g., the four types
of XQueries, in the YAWL Editor. The XQueries automatically generated by the Editor are sufficient in the
vast majority of cases.

5.5 Illustrative Examples

Below are three illustrative examples which cover the data perspective of YAWL. The first example is a
revised version of the “Credit Rating Process” taken from the “Oracle BPEL Process Manager: Quick Start
Guide” (10g Release 2. May 2005). The next two examples are the first two “Make Trip Processes” that can
be found in [2].

5.5.1 Example 1: Credit Rating Process

This is a simple process that provides a credit rating service. When running this process, the client (user) is
asked to provide his/her social security number. The process takes the number and returns credit rating.
There are two situations. If the client’s social security number starts with 0, a fault reporting “Bankruptcy”
will occur. Otherwise, a credit rating (e.g. 560) will be given. From the above, the data associated with this
process are: 1) client’s social security number (ssn), 2) credit rating (560), and 3) fault (“Bankruptcy”).

YAWL Specification

Figure 5.5 shows the YAWL net specifying the above credit rating process. There are three labelled tasks: Re-
ceiveSSN for requesting a social security number from the client; ReportFault for reporting a “Bankruptcy”
fault; and DecideRating for providing the credit rating 560. There is also an unlabelled task, which has an
XOR join; this is an example of a routing (or empty) task – that is a task without decomposition – and is used
here to ensure the net is ‘sound’.

Figure 5.5: The “Credit Rating Process” net

Figure 5.6 shows three net variable definitions for the “Credit Rating Process” net. All are defined as local

5.5. ILLUSTRATIVE EXAMPLES 131

variables in order to avoid any data interaction with the external environment at the net level. Also, both
rating and fault are assigned an initial value.

Figure 5.6: Net variable definitions

Figure 5.7 shows the parameter definition for the output-only variable ssn of task ReceiveSSN. This variable
requests a social security number from the client and, as specified in the output parameter definition, it then
passes the data to net variable of the same name via the XQuery “{/ReceiveSSN/ssn/text()}”. The Editor
automatically generates this query when the net variable is dragged to the decomposition level variable list.

Figure 5.7: Parameter definition for task ReceiveSSN

Figure 5.8 shows the flow definition at task ReceiveSSN. The predicate for the flow leading to task Re-

132 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

portFault is “starts-with(/Credit Rating Process/ssn/text(),‘0’)”5. It returns true if the string assigned to
variable ssn starts with zero. Otherwise, the flow leading to task DecideRating will be taken. Since the flow
evaluation is performed from the top-most flow to bottom-most flow at run time, the bottom-most flow will
be used as the default. The query “/Credit Rating Process/ssn/text()” can be generated by clicking the
Generate button in the Update Predicate for Flow dialog.

Figure 5.8: Split Predicates for task ReceiveSSN

Figure 5.9 shows the parameter definition for task ReportFault. The variable fault is used to carry the fault
information (“Bankruptcy”). It is defined as input only because the fault information is only used for client
notification upon execution of the task.

Figure 5.9: Input Parameter definition for task ReportFault

Similarly, task DecideRating has an input only variable rating defined to convey the credit rating (560) that
is only used for client notification upon execution of the task.

5starts-with(string, string) is an inbuilt XPath boolean function. It returns true if the first argument string starts with the second
argument string, and otherwise returns false.

5.5. ILLUSTRATIVE EXAMPLES 133

Now we have completed the control flow and the data definition of the credit rating process. The specifica-
tion will pass the syntax check in the YAWL editor and show the message “No problems reported”. The last
step before deployment is to specify the resource details for each of the manual tasks (i.e. ReceiveSSN, De-
cideRating, and ReportFault). Chapter 4, Section 4.8 illustrates how to allocate resources to a manual task.
Since we are concentrating here on the data perspective, we will choose to not specify any resourcing details
for those tasks; in doing so, each of those tasks will be assigned the default settings: the administrator will
allocate the tasks to resources manually at run time.

Finally, we save the “Credit Rating Process” to file, which can be deployed (uploaded) in the engine and
executed by launching a case.

Examples of Design-time/Run-time Errors

The above YAWL specification is both syntactically and semantically well formed, and can be executed
without any problem in the Engine. Now we will introduce some errors into the above specification to see
what we will encounter via design-time or run-time validation. These errors are considered to be common
when designing YAWL specifications, especially as they become increasingly complex.

Error 1: Missing Data Assignment for Input Variable

Suppose that we forget to specify the mapping from net variable fault to task variable fault in the input
parameter definition for task ReportFault. This results in two syntax errors after validating the specification
in the Editor, as shown in Figure 5.10.

Figure 5.10: An invalid specification with missing data parameter for an input variable

Error 2: XQuery with Invalid Semantics

Suppose that we use XQuery “/ReceiveSSN/ssn” but not “/ReceiveSSN/ssn/text()” in the output param-
eter definition for task ReceiveSSN. This modified query is a valid XQuery but the mapping is incorrect
in this case because it passes the entire XML element “<ssn> some social security number </ssn>” from

134 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

task variable ssn to net variable ssn, rather than only its content, as required. The mapping has a valid
syntax (because the result of both expressions is a string) and thus passes syntax validation in the YAWL
Editor. But at run time, after the user submits his/her social security number (via task ReceiveSSN), an “bad
process definition” error page as shown in Figure 5.11 will appear, indicating a failure has occurred when
passing the data extracted by the XQuery to the task variable. As a result, the executed credit rating process
is halted.

Figure 5.11: An error indicating invalid semantics of an XQuery used in the specification

5.5.2 Example 2: Simple Make Trip Process

This process revisits the example from Chapter 3, a trip booking service. When running this process, the
user is first asked to register for the trip. The registration information includes: customer name, trip start
date, trip end date, whether to include booking a flight, hotel, and/or car, and customer’s payment account
number. After the registration, the booking tasks requested by the user are executed in parallel, and the
booking details are also provided to each task. After all the booking tasks complete, the user is then asked
to make payment for the trip, and the process ends.

YAWL Specification

Figure 5.12 shows the YAWL net specifying the above simple make trip process. There are five labelled tasks:
“register” for registering for the trip; “pay” for making payment; and the other three tasks for making the
corresponding bookings. The task “register” has an OR split decorator, and the task “pay” has an OR join
decorator.

Figure 5.13 shows the data type definitions in this process. There are two new data types: tripRegistra-
tionType comprising information of trip start date (startDate), trip end date (endDate), whether to book a
flight (want flight), hotel (want hotel) and/or car (want car), the customer’s payment account number (pay-
AccNumber); and dateType comprising information of year, month and day, e.g., both startDate and endDate
are of dateType.

5.5. ILLUSTRATIVE EXAMPLES 135

Figure 5.12: The simple “Make Trip Process” net

Figure 5.13: Data type definitions

Figure 5.14 shows the net level variable definitions for the process. All are local variables of string type
except that “registrInfo” is an output only variable of tripRegistrationType. Also, the variable “customer”
has an initial value of “Type name of customer” (as a prompt for the customer to enter his/her name).

Figure 5.15 shows the parameter definition for the registerInfo variable of task “register”. The variable re-
quests registration information from the customer, and then passes the data to the corresponding net vari-
able via the XQuery “{/register/registrInfo/*}”. The task’s other variable, input & output variable customer,
gets the customer’s name, and then passes it to the net.

136 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

Figure 5.14: Net variable definitions

Figure 5.15: Parameter definition for task “register”

Figure 5.16 shows the Split Predicates for task “register”. The predicate for the flow leading to task “book
flight” is “/Make Trip Process/registrInfo/want flight/text()=‘true’”. The predicates associated with the
flows leading to task “book hotel” and “book car” follow the same pattern. Each predicate is used to
determine whether the variables included have a boolean value of “true” or “false”. Note that these split
predicates are defined for an OR split, so that one, two or three of the flows to booking tasks can be taken at
runtime.

Figure 5.17 shows the parameter definition of task “book flight” with four task variables. The first three
are input only variables that get data from the net via appropriate XQueries. Both startDate and endDate
get data from a part of the net variable registrInfo. There is one output only variable, flightDetails, which re-
quires information from the customer, such as his/her preferable airlines or a flight number. The parameter

5.5. ILLUSTRATIVE EXAMPLES 137

Figure 5.16: Flow definition at task “register”

definitions of tasks “book hotel” and “book car” are specified in a similar way, except that the output only
variable in each case is hotelDetails or carDetails respectively.

Figure 5.17: Parameter definition for task “book flight”

Figure 5.18 shows the parameter definition of task “pay” with five task variables. These are all input only
variables and they get data correspondingly from those net variables with the same names.

5.5.3 Example 3: Make Trip Process with Multiple Instance Composite Tasks

This process provides a booking service for a trip that has several legs. For each leg, the same simple make
trip process from the previous example will be executed as a sub-net of the overall process. As a result, we

138 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

Figure 5.18: Parameter definition for task “pay”

obtain a more complex Make Trip process by involving a multiple instance composite task for execution of
the simple make trip process for each leg. Also, the customer is provided with a subtotal of the payment for
each leg, and the subtotals for all the legs in the trip will be calculated into a total payment at the end of the
process.

YAWL Specification

Figure 5.19 shows the YAWL nets that comprise the process. There are two nets: the root net “make trip”
and a subnet that contains details for the composite task “do itinerary segment”, which is basically the same
“make trip” net in the previous example.

Figure 5.20 lists the data type definitions for the specification. There are five new (user-defined) data types.
The itineraryType contains a list of itinerary segments of itinerarySegType, which each comprises informa-
tion of departure location, destination, startDate, endDate, flightDetails, hotelDetail, carDetails, and subtotal. The
legsType is a set of legs of legType, which provides the information of departure location and destination. Finally,
the serviceType specifies whether to book a flight, hotel and/or car (as alternative to the previous example,
we group these needs together this time).

Figure 5.21 shows the net-level variable definitions for the “make trip” net. There are three new variables,
itinerary, legs, and subTotal, as compared to the previous simple “Make Trip Process” net in Section 5.5.2.

Figure 5.22 shows the parameter definition of task “register”. There are three task variables, customer, legs,
and payAccNumber, with appropriate input or output parameter definition.

Figure 5.23 shows the parameter definition of task “pay”. There are four variables which are all input only
variables. Note the input parameter definition of the mapping from variable subTotal to variable total. The
XQuery function sum() calculates a total sum of subTotals from each itinerary segment.

Figure 5.24 shows the parameter definition of the multiple instance composite task “do itinerary segment”.
There are nine task variables, which are also the net variables of the subnet of this task. All except startDate,

5.5. ILLUSTRATIVE EXAMPLES 139

Figure 5.19: The “make trip” net with a multiple instance composite task “do itinerary segment” and the
corresponding subnet

endDate, and serviceRequired are input & output variables conveying data between root net and the subnet.
The variable serviceRequired contains information only used within the subnet, and is therefore defined as
a local variable. The startDate and endDate variables are output variables reporting the user input back to
the corresponding net variables. Also, the input parameter definition for variable legs item and the output
parameter definition for variable itinerary are both determined by the task instance queries (see below).

Figure 5.25 shows the Input and Output binding dialogs for the multiple instance variable specific to in-
dividual execution instances of task “do itinerary segment” for each leg within one itinerary (i.e. a single
process instance). There are two input and two output queries. Firstly, an accessor query manipulates the
overall data carried by root net variable legs before the data is split out to each individual legs item variables.
This query determines the input parameter definition for variable legs item. Secondly, a splitter query sepa-
rates the unique values from the overall data carried by variable legs, and passes a unique value to variable
legs item associated with each instance. The data returned on completion of an instance is an XML docu-
ment. Thirdly, an instance query transforms such an XML document to a form that is suitable for aggregation
of data to the higher level, i.e. the root net “make trip”. This query determines the output parameter defini-
tion for root net variable itinerary. Finally, an aggregate Query generates an overall result and passes the data
to variable itinerary on completion of all instances of task “do itinerary segment” within a single itinerary.

140 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

Figure 5.20: Updated data type definition for the “make trip” net

5.5. ILLUSTRATIVE EXAMPLES 141

Figure 5.21: Net variable definitions for the “make trip” net

Figure 5.22: Parameter definition for task “register”

Here is the complete instance query (cf. Figure 5.25):

<itinerarySegment>
{/do_itinerary_segment/legs_Item/departure_location}
{/do_itinerary_segment/legs_Item/destination}
{/do_itinerary_segment/startDate}
{/do_itinerary_segment/endDate}
{/do_itinerary_segment/flightDetails}
{/do_itinerary_segment/hotelDetails}

142 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

Figure 5.23: Parameter definition for task “pay”

{/do_itinerary_segment/carDetails}
{/do_itinerary_segment/subTotal}
</itinerarySegment>

This is an example of a more advanced use of multiple instance task variables, where the input variable
(legs) is used to create individual task instances, based on the number of value elements its data contains,
while the net-level output or target variable (itinerary) is a different variable whose data value is a composite
of (most of) the other output variables of the task.

The subnet of task “do itinerary segment” specifies the simple “make trip” process. Thus, we do not go into
every detail, but provide the parameter definitions for tasks “register itinerary”, “book flight” and “prepare
pay” in Figure 5.26 to Figure 5.28, respectively. The parameters for the other two tasks “book hotel” and
“book car” are defined in a similar way to those of task “book flight”.

Note Since the variable subTotal is of double type, the XQuery function number() is used to extract data from
the variable.

5.5. ILLUSTRATIVE EXAMPLES 143

Figure 5.24: Parameter definition of task “do itinerary segment”

Figure 5.25: Input and Output dialogs for the multiple instance data of task “do itinerary segment”

144 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

Figure 5.26: Parameter definition for task “register itinerary”

Figure 5.27: Parameter definition for task “book flight”

5.5. ILLUSTRATIVE EXAMPLES 145

Figure 5.28: Parameter definition for task “prepare pay”

146 CHAPTER 5. HOW TO MANIPULATE DATA IN YAWL

Chapter 6

The Runtime Environment

This chapter provides an overview of the runtime environment from a user perspective.

When a YAWL workflow specification has been completed in the Editor it can be saved to a file, the con-
tents of which are in an XML format that can be interpreted by the YAWL Engine. The specification file
contains descriptions of each of the three perspectives of a process: control-flow (task sequences, splits,
joins etc.); data (variables, parameters, predicates etc.); and resourcing (participants, roles, allocators, filters
etc.). However, the Engine is responsible only for the control-flow and data perspectives – it essentially
ignores the descriptors for resourcing contained in a specification file, instead passing responsibility for the
resource perspective to a dedicated custom service. In the core YAWL environment, a custom service, called
the Resource Service, is supplied to provide comprehensive support for the resource perspective.

The resource perspective of Business Process Management (BPM) is concerned with the way work is dis-
tributed to resources. It is here that the link between the process model and the organisational model
is formalised. This is a very important perspective in BPM and one that has not had as much atten-
tion as the control-flow perspective. In fact the state-of-the-art in BPM environments typically lacks suf-
ficient support for the resource perspective (consult the Workflow Patterns Home Page at http://www.
workflowpatterns.com for more details).

The realisation of the resource perspective in YAWL is based on the analysis work reported in a technical
report on newYAWL [20] and Nick Russell’s PhD thesis [21]1.

The Resource Service is a large custom service that contains a number of components, primarily a Resource
Manager that is responsible for the allocation of tasks to human users (referred to as ‘participants’), and is a
Codelet Coordinator that manages the execution of codelets for automated tasks.

ASIDE: The Resource Service provides functionality to support the identified resource patterns [18] and
associated activities. However, as a custom service, it is completely removed from the operation of the
Engine. This means that developers are free to develop other custom services that communicate directly
with the Engine (and thus bypassing the Resource Service), although support for the resource perspective
would also be lost. Alternately, the Resource Service provides a number of interfaces that expose the full
functionality of the service, which developers may exploit to ‘override’ service components. For example,
other types of worklist services may be developed that leverage the resource management capabilities of the
Resource Service but present work to users in different or novel ways (the YAWL UI introduced in version 5
is one example of this); external organisational data sources may be used in place of the default internal data
model supported by the Resource Service; and so on. Also, the Resource Service is extensible in many ways,
for example developers may add new allocation strategies, filters, constraints, codelets etc. at any time,
which immediately become available for use in the service and the Editor. For more information, please
consult the YAWL Technical Manual.
Since the Resource Service provides the default set of tools for user interaction with the YAWL system,
this chapter describes the runtime environment by describing the use of the service. Configuration and

1For a discussion of how the workflow resource patterns have been realised in newYAWL, see appendix A.3 starting on page 373
of [21].

147

http://www.workflowpatterns.com
http://www.workflowpatterns.com

148 CHAPTER 6. THE RUNTIME ENVIRONMENT

Administration functionality is described first, followed by the various user interactions.

6.1 Engine Configuration Settings

The Engine has several configuration parameters that may be set in its web.xml file, which is located in the
folder \webapps\yawl\WEB-INF\. Below is the list of available parameters that are specific to the Engine,
what they are used for and what values may be assigned to them.

• EnablePersistence: When set to true (default), allows the engine to persist (backup) current process
data to a database, so that in the event of the Engine being restarted, the ‘work-in-progress’ can be
restored. There is rarely any need to disable persistence, and in any case this setting should always
match the ‘EnablePersistence’ settings of the Resource Service and the Worklet Service.

• DefaultWorklist: Each and every task that is enabled by the Engine during process execution is passed
to a YAWL custom service for processing. Each task that is not explicitly mapped to a custom service
at design time is dispatched to the Default Worklist Handler. That is, the default worklist handler is
the fall-through service that handles all tasks that aren’t explicitly associated with a chosen service.
Therefore, the Engine requires a service to be nominated for this purpose. By default, the Resource
Service serves this role, but any other service may be nominated as the default worklist by configuring
this parameter. The value of the parameter is the URL of the worklist, and its password, separated by
a hash character (#). The password must match the one the service will use to log onto the Engine.

• EnableLogging: The Engine records extensive data about running processes to its process log for later
analysis and to keep an historical archive. Process logging is enabled by default when persistence
is enabled. If persistence is enabled, setting this parameter to ‘false’ will disable process logging. If
persistence is disabled, the value of this parameter has no effect.

• AllowGenericAdminID: This parameter allows for the generic ‘admin’ user account to be disabled.
If the parameter’s value is ‘true’, services and applications may connect to the YAWL engine using the
generic administrator account ’admin’, password ’YAWL’ (or some other password if the password
has been changed – see Section 6.4.3). If the parameter’s value is ‘false’, each connecting service and
application must connect using a unique account previously registered with the engine.

• EnableHibernateStatisticsGathering: When set to ’true’, the hibernate database layer will collect
statistics of all operations for later perusal. When set to ’false’, the default, hibernate statistics col-
lection is disabled. There is a slight performance overhead associated with statistics gathering.

• InitialisationAnnouncementTimeout: When the Engine completes its initialisation and is running,
it sends an event announcement to all registered custom services to notify them that it is ready to
execute processes and receive requests. This parameter allows you to set the maximum number of
seconds the engine will spend trying to deliver the event to each registered service before giving up.
The specified value should cover the period between the moment the Engine has fully initialised and
the moment the server hosting a custom service is ready to accept HTTP connections. The value can
be any positive integer, and defaults to 5 seconds if the value is missing or invalid.

• InterfaceXListener: The fully qualified URI of a custom service that wishes to receive event notifica-
tions on Interface X (the exception handling interface). Multiple URIs can be specified, separated by
semi-colons ’;’. Note that services can also register themselves as Interface X Listeners programmati-
cally. See the Technical Manual for more details.

• ObserverGateway: The fully qualified class name of an ObserverGateway implementation. Multiple
implementations may be specified, separated with semi-colons ’;’. See the Technical Manual for more
information about Observer Gateways.

6.2. RESOURCE SERVICE CONFIGURATION 149

6.2 Resource Service Configuration

The Resource Service has a number of configuration parameters that may be set in the service’s web.xml file,
which is located in the folder \webapps\resourceService\WEB-INF\. Below is the list of available parameters
that are specific to the Resource Service, what they are used for and what values may be assigned to them.

• EnablePersistence: When set to true (default), allows the service to persist (backup) current work
queue data to a database, so that in the event of the Engine being restarted, the ‘work-in-progress’ can
be restored. There is rarely any need to disable persistence, and in any case this setting should match
the ‘EnablePersistence’ settings of the Engine and the Worklet Service.

• OrgDataSource: While the Resource Service offers an internal organisational database by default, it
also supports organisational data being used that is stored in existing, external data sources. This
is especially beneficial for sites that want to use org data already stored in HR Systems and so on.
External data sources may be ‘mapped’ to YAWL by implementing a java class to take care of the
necessary mappings (see the technical manual for details). This parameter allows for the specification
of that mapping class name. The default setting is ‘HibernateImpl’, the internal Resource Service
mapping class.

• ExternalUserAuthentication: When an external organisational data source is configured for use by
the Resource Service, a choice can be made regarding the logon authentication of users, which spec-
ifies whether the Resource Service will take responsibility or if authentication will be handled by the
mapping class (configured above). When this parameter is set to false (the default), user passwords
are encrypted and stored within each user record, and authentication is handled within the Resource
Service. When it is set to true, user authentication is deferred to the currently implemented external
organisational data source, and passwords are sent to the data source as plain text (rather than the
default encryption). It is up to the external data source to provide valid user authentication in this
case. A setting of true is only relevant if an external data source is active; if the default YAWL org
database is in use, this setting is ignored.

• AllowExternalOrgDataMods: By default, when an external organisational data source is configured
for use by the Resource Service, that data is not allowed to be modified via the Resource Service’s
administration web forms (i.e. data from an external data source is considered read-only by default).
When this parameter is set to true, modification of data from an external data source via the adminis-
tration web forms is allowed. A setting of true is only relevant if an external data source is active; if
the default YAWL org database is in use, this setting is ignored.

• OrgDataRefreshRate: This parameter provides for the setting of a regular time interval to refresh
the organisational data caches in the Resource Service. This is particularly important when the org
data is sourced externally, and that external source is ‘live’ (regularly updated through other systems).
If an external data source is not being used, then the parameter’s value should be left at −1 (the
default, interpreted as ‘never refresh’), since the internal data sources are only ever updated through
the Resource Service. The parameter value specifies the number of minutes to wait between refreshes.

• BlockOnUnavailableSecondaryResources: A work item may have zero or more secondary resources
(i.e. non-human resources, and human resources that aren’t primarily responsible for the work item’s
performance) allocated to it. For each work item that has secondary resources allocated to it, setting
this parameter to ‘true’ will prevent the work item from being started if any of its secondary resources
are unavailable. When set to ‘false’ (the default), the missing resource(s) will be noted in the log only,
but the work item will be allowed to start.

• EnableLogging: The Resource Service also records extensive data about running processes to its pro-
cess log for later analysis and to keep an historical archive. Process logging is enabled by default when
persistence is enabled. If persistence is enabled, setting this parameter to ‘false’ will disable process
logging. If persistence is disabled, the value of this parameter has no effect.

150 CHAPTER 6. THE RUNTIME ENVIRONMENT

• LogOffers: By default, all resourcing events (offer, allocation, start, reallocate, etc.) are written to a
process log. If there are large numbers of participants in the organisational model, or work items
are typically offered to a large number of potential participants, the logging of all offers may incur
some processing overheads for little return (e.g. there may be instances where a work item is offered
to several hundred participants – the members of that set can always be derived from design time
resourcing parameter settings in any case). By setting this parameter to ‘false’, no offer events will be
logged; logging of all other events will still occur.

• DropTaskPilingOnLogoff: A participant who has been granted the authority to ‘pile’ a certain task,
may then explicitly and manually choose to do so, which means they will receive all instances of that
task, across all current and future instances of the process that contains the task. When this parameter
is set to true, piling of tasks for a participant will cease when the affected participant logs out. When
this parameter is set to false (the default), piling of tasks for a participant will continue, whether the
participant is logged on or not, until it is explicitly ceased by the affected user or an administrator. This
setting is ignored (i.e. treated as ‘true’) if persistence is not enabled. This parameter applies globally
to all piled task participants.

• GenerateRandomOrgData: This parameter allows you to quickly fill the organisational data base
with randomly generated data (participants, roles, positions, capabilities and org groups), which is
especially useful for testing purposes, or to examine the capabilities of YAWL without first having
to manually populate the org database with real (or dummy) data. A parameter value of between 1
and 100 will generate that number of randomised participants (with associated membership of roles
etc.); a value greater than 100 is treated as 100. A value of −1 (the default) turns off random org data
generation. If you do make use of this feature, don’t forget to reset the value to−1 after the generation
is done.

• ExternalPluginsDir: The Resource Service supports the ability to extend its functionality through
a number of ‘pluggable’ interfaces. These interfaces allow developers to provide their own plug-
gable classes (i.e. codelets, allocators, filters, constraints and so on). By default, these classes are
inserted into the internal YAWL class packages, which becomes problematic whenever YAWL has
a version upgrade. The ‘ExternalPluginsDir’ parameter sets an external base directory for third-
party plug-in classes. The base directory must refer to a location on the local disk, for example:
“C:\yawlplugins”. Several base directories can be provided, separated by semi-colons, for example:
“C:\yawlplugins;C:\some\other\place”. The service will expect to find classes to be located in sub-
directories of the specified external directories matching their own package structure, and ending in
the ’type’ of the plugin (i.e. ‘codelets’, ‘allocators’, ‘constraints’ or ‘filters’). For example, if the ‘Exter-
nalPluginsDir’ is set “C:\yawlplugins” and there is a codelet file called ‘MyCodelet.class’ and it has
a package ‘com.example.yawl.codelets’ (since its a codelet, it must end in ’codelets’) then its full file
path is expected to be “C:\yawlplugins\com\example\yawl\codelets\MyCodelet.class”. If there are
no external plug-ins, then this parameter can be commented out or the param-value can be left blank.

• EnableVisualizer: When set to true, an extra button will appear on user work queues to show work
items via the Visualizer applet (assumes the visualizer is available). The default setting is false.

• VisualizerViewSize: When the Visualizer applet is enabled, this parameter configures the size of
the Visualizer applet’s view window. The value must be two comma-separated positive integers
(width,height). If no value is given, or the value is invalid, a default of 800,600 will be used. When the
visualizer is disabled, this parameter is ignored.

• InterfaceX BackEnd: This parameter is commented out by default. When the commenting is re-
moved, the extensions to the work queues required for the Worklet Service are enabled. When en-
abled, the value of this parameter must equal the valid URI of the Worklet Service

• InterfaceS BackEnd: This parameter is commented out by default. When the commenting is removed,
scheduling event announcements to a scheduling service listening on Interface S are enabled. When
enabled, the value of this parameter must equal the valid URI of a running Scheduling Service.

6.3. LOGGING ON 151

• DocStore BackEnd: The URI of the DocumentStore service, which supports the passing of binary
files as task data values (see Section 9.1 for more information). This parameter should be changed
only when the document store is located remotely.

6.3 Logging On

To log on to YAWL:

1. Start the YAWL engine by choosing the option “Start Engine” from the YAWL program menu (or by
starting Tomcat directly);

2. Navigate to the YAWL web UI either by choosing “YAWL Control Centre” from the program menu or
by pointing your browser at http://localhost:8080/yawlui.

3. Login with an existing userid and password. First time logons (i.e. where there are no participants
defined in the organisational database) should use the generic userid “admin” and password “YAWL”.

Once logged on, the menu to the left lists all of the functionalities available to the logged-on user. It may
be hidden or shown by clicking the icon in the top left of the screen (see Figure 6.1). Most screens have
a similar layout, with items appearing in tabular form. Each item (row) in the table has a set of available
actions on the right (item actions), while at the bottom are actions that generally apply to the whole table
(footer actions).

Note that a participant with administration privileges will have available the full menu of actions (Fig-
ure 6.1 shows an example); ordinary participants and participants with some extra privileges will see a
subset of those actions when they log on. The “admin” userid is a ‘special’ logon, which can be used for
administrative tasks only – but because it is not a formal participant (i.e. it is not a logon associated with
a unique person), it has no access to an individual work queue, so the menu options for ‘Work Queues’,
‘Team Queues’ and ‘Edit Profile’ are not available for the “admin” logon. The currently logged-on user’s ID
will also appear (as plain text) at the right of the top toolbar on all screens.

6.4 Administration

A workflow administrator can load new workflow specifications, can start cases for them, can manage all
active work items, can register or remove custom services and client applications, and add, manage and
remove participants, roles, positions, non-human resources and organisational groupings. In this section
we will explore how these functions are achieved.

6.4.1 Case Management

Choose Case Mgt in the left menu to display in the Case Management screen, as shown in Figure 6.1. The
screen is divided into two grids: the upper one show the list of currently loaded specifications, while the
lower one show the list of currently running cases.

The item actions for each specification listed in the Specifications grid are, left-to right:

• Launch a new instance of the specification. If the specification has input parameters a form will appear
asking for values for these parameters to be provided before the case is launched.

• Set a new instance to launch at a later time (see below for details).

• View summary information about the specification (see Figure 6.2 for an example).

• Generate and download the process event log for the specification, in OpenXES format. The log file
produced can be read directly into a process mining tool, such as ProM2. Note that the generation of a

2http://processmining.org

http://localhost:8080/yawlui
http://processmining.org

152 CHAPTER 6. THE RUNTIME ENVIRONMENT

Figure 6.1: Case Management

process log file may take some time, especially if there has been a large number of cases executed for
the selected specification.

• Remove the specification from the YAWL Engine. Note that an attempt to unload a specification will
fail if there are any instances of it still executing.

The footer actions for the Specifications grid are, left-to right:

• Add (upload) a specification to the YAWL Engine from file. A dialog will appear from which you can
browse to, or drag’n’drop, the file. Only valid specification files with a .yawl or .xml extension can be
uploaded.

• Remove all selected specifications from the YAWL Engine

• Manually refresh the grid

When a specification is uploaded, it is validated against the YAWL specification schema. If there is a problem
with the upload, an appropriate error message is displayed.

Note that attempting to upload a specification that has already been uploaded (i.e. same specification id
and version) is not possible and will result in an error message to this effect being displayed. It is possible
to have different versions of the same specification loaded at any one time (e.g. if a specification has been
updated, but there are still cases running against the older version), but new cases may only be launched
for the latest version uploaded.

The launching of a new case can be queued for a period by clicking the Launch Later button, which displays
the popup dialog shown in Figure 6.3. The dialog provides three ways to specify a delay:

1. A number of seconds: allows for the entry of a whole number of seconds. When the dialog is closed
with the OK button, the case will launch after the specified number of seconds has elapsed.

2. A Duration: allows for the entry of an xsd:duration value (see Section 4.13 for details on specifying
Duration type values). When the dialog is closed with the OK button, the case will launch after the
specified duration has elapsed.

6.4. ADMINISTRATION 153

Figure 6.2: Specification metadata dialog

Figure 6.3: Delayed Launch dialog

3. An exact date and time: allows for the entry of a specific future moment (date & time). When the
dialog is closed with the OK button, the case will launch when the specified moment arrives.

The three fields have a top-down priority, and the first field with a value provided will be accepted: if a
number of seconds is specified, that will be accepted as the delay, otherwise the Duration value will be
taken if specified, otherwise the exact date and time specified in the bottom fields will be accepted as the
desired delay value.

The Cases grid shows the list of all the cases currently executing in the Engine. There are two item actions
for this grid, left-to-right:

• Worklet actions, which allow for the raising of an exception or rejecting a selected ‘worklet’. This
action is only available when the Worklet Service is installed. See Chapter 8 for details about the
Worklet Service.

154 CHAPTER 6. THE RUNTIME ENVIRONMENT

• Cancel the case.

The footer actions on the Cases grid allow for the cancellation of multiple selected cases, and to manually
refresh the list of running cases.

6.4.2 Admin Queues

An administrator can view all of the various work items that are currently active and their statuses via the
Admin Worklist (see Figure 6.4). There are three item actions available for each listed work item, left-to-
right:

• (Re) Offer

• (Re) Allocate

• (Re) Start

Figure 6.4: Administration Queues

The way the actions function differs slightly, depending on the current status of the work item. An Unoffered
item is one that did not have any resources specified for it at design-time, and so does not currently reside
on anyone’s work list. An administrator can assign unoffered work items to the offered, allocated or started
work lists of selected participant(s) via the item actions listed above. Selecting an action will display a list
of all participants on the right side of the page. Multiple participants may be offered the work item, while
selecting the Allocate or Start actions will allow the selection of a single participant.

For work item statuses other than Unoffered, an administrator may change the assigned participant(s) and/or
the status of the work item:

• If the current resource status is Offered, the work item may be Reoffered to one or more participants.

• If the current resource status is Allocated, the work item may be Reoffered to one or more participants,
or Reallocated to a single participant.

• If the current resource status is Started, the work item may be Reoffered to one or more participants,
Reallocated to a single participant, or Restarted to a single participant.

6.4. ADMINISTRATION 155

The footer actions for the Admin Worklist are, left-to-right:

• Clicking the ‘gear’ icon will reveal a check box labelled Directly to me. When it is unchecked and an
item action is clicked, a list of all participants will be displayed, from which selections can be made. If
the checkbox is checked, the action triggered by the button click will occur as if the currently logged
on participant had selected themselves from the list (thus bypassing the list display). The Directly
to me checkbox is available only to participants with administrator privileges, but not to the generic
“admin” userid (since “admin” is not a participant, it cannot have work items assigned to it). The
check box can be hidden by toggle-clicking the icon.

• Allows the selection of secondary resources for a selected work item with other than Started status. See
more details below.

• While the list is regularly updated, this action will manually refresh the list.

Documentation

The Documentation column shows the documentation text (if any) for each work item. Typically, this text
is added at design time in the Editor (see Section 4.16), but administrators can modify the text at any time
by double-clicking in the cell to be edited and then making the necessary changes. To complete the change,
click anywhere outside the cell, or press Escape. All changes are immediately saved and propagated to all
user worklists that contain the work item.

Secondary Resources Administration

The Secondary Resources footer action on the Admin Worklist provides administrators with the ability to dy-
namically alter the set of secondary resources allocated to a work item, if the work item has not yet been
started. This becomes especially important if the service has been configured to block the starting of work
items on unavailable secondary resources (cf. Section 6.2). It is also possible to add secondary resources to
a work item at runtime (before it starts) even if none were allocated to it at design time.

Clicking on the action opens the Secondary Resources dialog as shown in Figure 6.5. This dialog has a similar
layout to the ‘Secondary Resources’ panel of the Editor’s Resourcing Dialog (cf. Section 4.8.2). On the left
are lists of Roles and individual participants, and Asset Categories and individual ‘assets’ (i.e. non-human
resources). On the right is the list of selected secondary resources for the chosen work item. Selecting an
item from a list on the left will move it to the list of selected resources on the right.

ASIDE: Every non-human resource, or asset, belongs to a category. For example, a photocopier, a printer,
a portable computer and a camera may all belong to the category “office machines”. Categories may be
further divided into a set of sub-categories, so for example, a photocopier may belong to the “copiers” sub-
category, and a camera may belong to the “cameras” sub-category of the “office machines” category. Each
category has a default sub-category called “None”, into which all of the assets of the category that have not
been explicitly sub-categorised are placed.

A resource may be removed from the Selected Resources list by selecting it and clickng the small ‘x’ action at
the bottom right of the list, or may be deselected from the relevant list on the left of the dialog. Click the OK
button to save the selections, or Cancel to take no action. When OK is clicked, the selections are first checked
for availability, and any unavailable resources will be reported in a message, in which case the list may be
modified and retried.

See Section 6.5 for more information about the management of non-human resources.

6.4.3 Service/Client Management

The Services/Clients page may be used to add, view and to remove registered custom services and client
applications (Figure 6.6). The upper grid shows the currently installed custom services (i.e. services that
may be delegated a work item), and the lower grid shows the currently registered client applications (i.e.

156 CHAPTER 6. THE RUNTIME ENVIRONMENT

Figure 6.5: Secondary Resources dialog

apps, including services that do not have work items delegated to them during the execution of a process
instance).

for each grid, the available item actions are:

• Edit the item. A dialog is displayed, similar to Figure 6.7, which allows for the editing of service or
client details.

• Remove the item.

The footer actions are:

• Add a new service or client (see below).

• Remove multiple selected items.

• Refresh the grid.

A new service can be added by providing a name, a password and confirmation, a URL and a Description
(Figure 6.7). The password and confirmation password must match each other, and name and password
must also exactly match the credentials that will be used by the service to log onto the Engine (see Table 6.1
for a list of credentials for each of the standard YAWL custom services). The URL is validated by contacting
it and waiting for an appropriate response, so care should be taken that the URL provided exactly matches

6.4. ADMINISTRATION 157

Figure 6.6: Service Management

Figure 6.7: Adding a new Service

that of the specified service. Each listed service has an indicator to its left, lit green if the service is available
at the specified URL, or red if it is not.

Although the Resource Service itself is a custom service, it is not registered using this form, because it is

158 CHAPTER 6. THE RUNTIME ENVIRONMENT

Name Password URI
workletService yWorklet http://localhost:8080/workletService/ib
wsInvokerService yWSInvoker http://localhost:8080/yawlWSInvoker
mailService yMail http://localhost:8080/mailService/ib
digitalSignatureService yDigitalSignature http://localhost:8080/digitalSignature/ib

Table 6.1: Logon Credentials and URLs for the Standard Custom Services

pre-registered with the Engine as the Default Worklist Handler via a configuration setting.

The Editor, when connected to the Engine, will retrieve the set of registered services, and make them avail-
able for assigning to tasks by displaying the description entered for each service in the drop down list of the
Task Decomposition dialog (see Section 4.10.2).

To deregister a service from the Engine, click its Remove action.

To add a new client application, provide a name, a password and confirmation, and a Description. The
password and confirmation password must match each other, and name and password must also exactly
match the credentials that will be used by the application to log onto the Engine. The credentials for the
Editor are editor (username) and yEditor (password), and for the monitor service they are monitorService
(username) and yMonitor (password).

Note that in Figure 6.6 the generic admin user id is also listed in the registered accounts. Its listing here
allows administrators to change the password on the generic admin if desired. To change the password or
description of a registered client application account, click its Edit action – the details of that account will
populate fields, allowing you to modify and save them.

To remove an account from the Engine, select it in the list, then click the Remove button. Note that the generic
admin account cannot be removed in this way, but may be disabled via an Engine configuration setting (see
Section 6.1).

ASIDE: The reason why the monitor service is listed as a client application and not as a custom service is
simply because the monitor service does not qualify as a custom service. To qualify as a custom service, a
service must be able to take responsibility for the execution of a task. That is, the service must be able to
be assignable to a task at design time via the Editor’s Task Decomposition dialog (as are all those services
mentioned in Section 6.4.3). The monitor service can’t be assigned tasks for execution, since it is designed
to display information about current processes, and so rightly belongs in the list of client applications, as do
all such services.

6.4.4 Managing Organisational Data

Roles, capabilities, positions and organisational groupings can be defined and managed through the Org
Data page, see Figure 6.8:

• Role: Generally, a role is a duty or set of duties that are performed by one or more participants. For ex-
ample, bank teller, police constable, credit officer, auditor, properties manager and junior programmer
are all examples of roles that may be carried out by one or more participants within an organisation.
There may be several participants performing the same role (for example, a bank may have a number
of tellers), so a typical role in an organisational model may contain a number of participants. Con-
versely, a certain participant may perform multiple roles. Further, a role may belong to a larger, more
general role (for example, the roles junior teller and senior teller may both belong to a more general
role called ‘teller’). A role may be included in the distribution set for a task at design time, meaning
that all of the participants performing that role (or any of its sub-roles) are to be considered as potential
recipients of a work item created from the task at runtime.

• Capability: A capability is some desired skill or ability that a participant may possess. For example,
first aid skills, health and safety training, a forklift license or a second language may all be considered
as capabilities that a participant may possess that may be useful to an organisation. There may be

6.4. ADMINISTRATION 159

Figure 6.8: Organisational Data Management

several participants within an organisation possessing the same capability, and a certain participant
may possess a number of capabilities. A capability (or capabilities) may be included in a filter defined
at design time that is run over the distribution set for a task at runtime, so that only those participants
within the distribution set that possess the specified capability or capabilities are potential recipients
of a work item created from the task.

• Position: A position typically refers to a unique job within an organisation for the purposes of defining
lines-of-reporting within the organisational model. Examples might include CEO or Bank Manager,
or may be internal job codes (such as ‘TEL0123’). A position may report to zero or one other positions
(for example, bank teller ‘TEL0123’ may report to the Bank Manager), and may belong to zero or one
Org Groups (see below). Like capabilities, a position (or positions) may be included in a filter defined
at design time that is run over the distribution set for a task at runtime. Positions are also used at
runtime to enable resource patterns such as delegation, reallocation and viewing of team work queues
(see Section 6.7 for more details).

• Org Group: An organisational group (org group) is a functional grouping of positions. Common
examples might include Marketing, Sales, Human Resources and so on, but may be any grouping
relevant to an organisation. In the YAWL model, each position may belong to zero or one org groups.
Further, like roles, an org group may belong to a larger, more general org group (for example, the
groups Marketing and Sales may each belong to the more general Production group). Org groups are
often also based on location. Like positions, org groups may be included in a filter defined at design
time that is run over the distribution set for a task at runtime.

While the descriptions of the various entities in the YAWL model above discuss the typical uses of each, it
should be clear that they represent, at the most basic level, merely various ways to group participants. The
main point of distinction between them is that only roles can be used to populate a distribution set in the
Editor, the other three may be used to perform filtering over the set.

The Org Data Screen contains four tab-pages, one for each of org entities listed above. Each can be selected

160 CHAPTER 6. THE RUNTIME ENVIRONMENT

by clicking on the tab name at the top of the grid. The methods used to maintain the data for each entity are
similar for each page. Each grid has two item actions:

• Edit an item, to change its name, description, note, belongs to and/or reports to values (see, for exam-
ple, the Edit Role dialog in Figure 6.9). Individual members may be added or removed via a list on the
right of the dialog.

• Remove the item.

Figure 6.9: Editing a Role

All pages share the same set of footer actions. The first two enable easy backup and recovery of organisa-
tional data:

• Import Org Data from file (that has previously been exported; see below). At any time, backed up org
data can be re-imported. You will be prompted for the file to import. Existing data is not removed –
importing data will append new data and update existing data. A message describing the effects of
the import will be displayed on completion.

• Export Org Data to File: clicking this action will download a file called ‘YAWLOrgDataBackup.ybkp’
will be created and downloaded via your browser. The file will contain your entire org database,
including participants and non-human resources, in XML format (passwords are encrypted).

• Add a new entity, which will display an ‘Add New’ dialog (similar to figure 6.9). Enter a name for
the entity, and optionally a description and note, choose the entity it belongs to and/or reports to as
required (see below), then click the Save button. Individual members may also be added to the new
entity via a list on the right of the dialog.

• Remove multiple selected entities.

• Refresh the grid.

With regards to the belongs to and reports to relations:

• A role may belong to another role – you may set this relation using the Belongs To dropdown on the
Roles Add or Edit dialog. This allows a hierarchy of roles to be created, so that when a task is assigned
to a role in the Editor, and that role has other roles belonging to it, those roles are also implicitly

6.4. ADMINISTRATION 161

included (by inheritance). You will not be allowed to have a role belong it itself, either directly or as
part of a cycle back to itself, for example if role A belongs to role B which in turn belongs to role C,
you will not be allowed to have role C belonging to role A (or B).

• An org group can belong to another org group, similarly to a role. You may also set an Group Type for
an org group via a dropdown; select the type of group from the list then click the Save button.

• A position may report to another position, allowing a lines-of-reporting hierarchy of positions to be
created. Again, this is done in a similar fashion to setting a role belongs to hierarchy, and the same
cyclical constraints apply. A position may also belong to an Org Group, which can be chosen via the
Org Group dropdown on the Positions tab-page.

6.4.5 Managing Users

Though the Participants page (see Figure 6.10), an administrator can add participants (i.e. users), edit details
and privileges for existing participants, and remove them. This page has item actions for editing or remov-
ing a participant. There are footer actions on this page to add a new participant, remove multiple selected
participants and to manually refresh the page.

Figure 6.10: Participants Page

Choosing an Edit or Add action will display the dialog shown in Figure 6.11. The dialog consists of three
areas: top-left shows the participant’s personal details (name, password, userid and so on); top-right allows
the setting of user privileges (see below); and bottom allows the assigning of the participant to various roles,
positions and capabilities. There are many similarities between the User Mgt and Org Data Mgt Screens
regarding the addition, modification and removal of items:

• To Add a new participant, click the Add footer action. For a new participant, entries for first name, last
name, userid and password (new and confirm) are required. Userids must begin with a character and
may contain the letters, digits and underscores. Passwords must be at least 4 characters in length. The

162 CHAPTER 6. THE RUNTIME ENVIRONMENT

Figure 6.11: Adding or Editing a Participant

email, note and administrator fields are optional, as are privilege settings (by default all are unselected)
and role/position/capability memberships. When you have finished adding participant information,
click the OK button. You may cancel the addition at any time by clicking the Cancel button.

• To Edit a participant, click their Edit item action, then add or change the desired fields, then click the
OK button.

• To Delete an participant, click their Remove item action.

User Privileges

Firstly, each participant may be designated ‘user’ (the default) or an ‘administrator’ privileges. To grant
administrator privileges for a participant, click their Edit item action, tick the Administrator checkbox, then
click the OK button. Administrator privilege overrides all other user privileges.

Participant’s without administrator privileges may be granted specific privileges by clicking their Edit item
action, then selecting the desired privileges in the dialog, then clicking the OK button. The privileges that
may be assigned to participants on an individual basis are:

• Manage cases: When granted, this privilege gives a participant access to the Case Mgt admin page,
providing the ability to load process specifications, and start and cancel case instances. When denied
(the default), the Case Mgt page is not available to the participant.

• Choose work item to start: When granted, this privilege allows a participant to choose any Allocated
work item listed on their work list to start. When denied (the default) only the first (i.e. oldest) listed
work item may be chosen.

6.4. ADMINISTRATION 163

• Reorder work items: When granted, the participant may choose a work item to start from anywhere
in the list of allocated or offered work items. When denied, only the oldest listed work item may be
chosen. In the YAWL environment, there is essentially no difference between this privilege and Choose
Which Work Item to Start.

• Start work items concurrently: When granted, this privilege allows a participant to have a number
of work items executing (i.e. with Started status) concurrently on their work list (or, more accurately,
may choose to start additional work items while other previously started work items have not yet
completed). When denied (the default), an Allocated or Offered work item on the participant’s work list
may not be started while there is a previously started work item on their work list (i.e. one that has
not yet completed).

• Chain work item execution: When granted, this privilege allows a participant to chain work items
for a case. When denied (the default), the participant may not chain cases (see Section 6.7 for details
regarding the chaining of tasks).

• View team’s work items: When granted, this privilege gives a participant access to the My Team’s
Worklist page, and displays on a tab of that page a consolidated list of all work items on all work
lists of all participants subordinate to the participant who has been granted the privilege (that is, all
participants holding positions that report to a position held by the granted participant, either directly
or through a hierarchy of positions). When denied (the default), the Team tab on the My Team’s Worklist
page is not available to the participant.

• View org group’s work items: When granted, this privilege gives a participant access to the My Team’s
Worklist page, and displays on that page a consolidated list of all work items on all work lists of all
participants in the same Org Group as the granted participant. When denied (the default), the Org
Group tab on the My Team’s Worklist page is not available to the participant.

A participant with default user privileges (i.e. all unselected) have access to their own work lists, and may
view/edit their own profile. A participant with Manage Cases privilege can also access the Case Mgt page. A
participant with View team’s work items or View org group’s work items privilege can also access the My Team’s
Worklist page. All other screens can only be accessed by participants with administrator access.

6.4.6 Task Privileges

Task privileges (or, more precisely, User-Task privileges), unlike the User privileges described above, are set
at design time via the Editor (see Chapter 4, Section 4.8.3) on an individual task basis. The relevant dialog tab
is re-shown in Figure 6.12, and a description of each task privilege is included here for completeness.

Broadly speaking, task privileges grant or deny the ability to affect in various ways how work items are
resourced after initial distribution has completed. There are seven task privileges:

• Allow work item suspension: When granted, allows a participant to suspend the execution of a work
item after it has been started.

• Allow work item reallocation with reset state: When granted, allows a participant to transfer re-
sponsibility for the execution of a work item from themselves to another participant, with the data
parameters of the work item reset to the values held when the work item was first started.

• Allow work item reallocation with retained state: When granted, allows a participant to transfer
responsibility for the execution of a work item from themselves to another participant, with the data
parameters of the work item having their current values maintained.

• Allow work item deallocation: When granted, allows a participant to reject or rollback the allocation
of a work item to their allocated queue. The work item is redistributed using the original resourcing
specification, but with the participant removed from the distribution set.

164 CHAPTER 6. THE RUNTIME ENVIRONMENT

Figure 6.12: The Task Privileges tab of the Resourcing Dialog

• Allow work item delegation: When granted, allows a participant to delegate the responsibility for the
execution of a work item to a subordinate member of their work team, as defined by the organisational
model.

• Allow work item to be skipped: When granted, allows a participant to have the execution of a work
item skipped – that is, immediately completed without performing its work.

• Allow work item to be piled: When granted, allows a participant to demand that all future instances
of work items derived from this task, in all future instances of the specification of which the task is a
member, are immediately directly routed to the participant and started.

All task privileges are denied by default, and so must be set explicitly for each task as required. Each

6.5. MANAGING NON-HUMAN RESOURCES 165

privilege may be set to allow all participants and roles, or restricted to allow only those participants and/or
roles explicitly specified.

6.5 Managing Non-Human Resources

Similarly to the Org Data page, the Non-Human Resources form allows administrators to add, modify and
remove non-human resources and their categories. The form consists of two tabs, Resources and Categories,
as can be seen in Figure 6.13.

Figure 6.13: Non-Human Resources Page (Resources tab)

• Resources: A non-human resource (or asset) is any organisational resource that isn’t a person. Exam-
ples may include vehicles, meeting rooms, tools, raw materials, computers and other office equipment,
and so on. Zero or more non-human resources may be allocated to a task, at design time and/or at
runtime before the task is started, as so-called secondary resources. The set of allocated non-human re-
sources represents those additional organisational resources that are required to perform the work of
the work item. However, unlike the primary resource, they do not directly interact with the work list
that the work item appears on. For example, in a hospital surgery setting, the primary resource for a
Schedule Surgery task may be a participant that belongs to the Schedulers role (only a participant can be
a primary resource, and a task can have exactly one primary resource), while secondary resources for
the task may include an operating theatre, a recovery room, sets of surgical instruments, a number of
surgeons and surgical nurses (participants can be secondary resources, too) and so on.

• Categories A category is a grouping of non-human resources that relate to each other in some way.
For example, a category called Rooms may include all of the usable rooms of an organisation that can
be used in some way to perform an activity. A category may be further split into a number of sub-
categories, for example the Rooms category in a hospital setting may include sub-categories such as
Meeting Rooms, Operating Theatres, Recovery Rooms, Lunch Rooms and so on. A resource that is placed
in a particular sub-category is also considered to be a member of its parent category (a room called

166 CHAPTER 6. THE RUNTIME ENVIRONMENT

‘M-123’ in sub-category Meeting Rooms is also a member of category Rooms). Each resource therefore
belongs to a single category and optionally a single sub-category within that category. Each category
contains a ‘special’ sub-category called None which implicitly contains all the resources of the category
that have not been explicitly placed into one of its sub-categories (for example, if the organisation has
a single Conference room, there is little benefit creating a Conference Rooms sub-category for that one
room).

Figure 6.14: Add Non-Human Resource Dialog

Of course, an organisation would include in its organisational model only those non-human resources that
are limited in some way and are required exclusively to complete some activity. Also, how non-human
resources are categorised is entirely subjective.

The Resources tab of the Non-Human Resources page (Figure 6.13) is where individual non-human resources
can be added, modified or removed.

• To Add a new non-human resource, first click the Add footer action to display the Add dialog (Figure
6.14). Enter a name for the resource, and optionally a description, then choose the category it belongs
to and optionally its sub-category, and finally click the OK button. You may cancel the addition at
any time by clicking the Cancel button instead. Selecting a category changes the list of related sub-
categories for selection. If the resource does not have a sub-category, leave it set as ‘None’.

• To Edit a non-human resource, click its Edit item action, then add or change its name, description,
category and/or sub-category values, then click the OK button.

• To Delete a non-human resource, click its Remove item action.

On the Categories tab of the Non-Human Resources Management page (Figure 6.15), categories and sub-
categories can be added or removed, and member resources of each category can be viewed.

Categories can be added, updated and removed in a similar way to non-human resources (on the Resources
tab). The Edit Category dialog is shown in Figure 6.16 (the dialog to add a category is identical, except it
doesn’t have the Members list). To add a sub-category for the selected category, click on the Add button
(the ‘+’ button on the bottom-right of the sub-categories list), enter the name of the new sub-category in
the input field that appears, then click the OK button to save it to the list, or the Cancel button to cancel the
addition. To remove a sub-category for the selected category, first select it then click on the Remove Sub-
category button (the ‘X’ button to the bottom-right of the sub-categories list). Note that the sub-category
‘None’ cannot be removed.

6.6. RESOURCE CALENDAR MANAGEMENT 167

Figure 6.15: Non-Human Resources Page (Categories tab)

Figure 6.16: Add/Edit Category Dialog

6.6 Resource Calendar Management

As mentioned in the previous section, all of the resources (human and non-human, primary and secondary)
allocated to a work item are marked as in use while the work item is executing, and are released when it
completes. This means that while a resource is in use, it is unavailable to other work items that it may also
have been allocated to. However, there may be other reasons why a resource is not available, even if it is not
currently engaged in the performance of a work item. For example, a participant may be on annual leave,
or away sick, or a particular machine may be offline for maintenance, and so on. To allow these periods
of unavailability to be recorded and taken into account, a resource calendar is maintained by the Resource
Service. The Calendar admin page is shown in Figure 6.17. On this page, calendar entries for resources may
be viewed, added, modified and removed. An entry in the calendar denotes that the specified resource is
unavailable for the specified period.

168 CHAPTER 6. THE RUNTIME ENVIRONMENT

Figure 6.17: Resource Calendar Management

At the top left of the page there is a date selector; choose a particular date to view the entries for that
date. Clicking the calendar button will display a calendar component from which a particular date may be
selected. Clicking the left arrow button will go to the previous day, while the right arrow button will go to
the next day. Next to the date selector is View dropdown with values Day, Week, Month and Year. Selecting a
view period will show all entries for the period, beginning from the date selected.

On the top right, there is a dropdown list called Filter, with the following selections:

• Unfiltered: All entries for all resources are listed for the selected date and range (as in Figure 6.17).
New entries cannot be added in this mode (see below).

• All Resources: Lists all the All Resources entries for the selected date and range. Clicking the Add
footer action allows you to add an entry that applies to all resources, both human and non-human.

• All Participants: Lists all the All Participants entries for the selected date and range. Clicking the Add
footer action allows you to add an entry that applies to all participants.

• All Assets: Lists all the All Assets (non-human resources) entries for the selected date and range.
Allows you to add entries that apply to all assets.

• Selected Participant: Enables the Resource dropdown list beside it, and allows you to select an individ-
ual participant from that list. Once selected, all the existing entries for the participant for the selected
date are listed, and allows new entries to be added for the participant.

• Selected Asset: Enables the Resource dropdown list beside it, and allows you to select an individual
asset from that list. Once selected, all the existing entries for the asset for the selected date are listed,
and allows new entries to be added for the asset.

As mentioned above, calendar entries may be added that apply to All Resources (as a group), All Partici-
pants (as a group), All Assets (as a group), an individual participant or an individual asset. To add a new
entry:

6.6. RESOURCE CALENDAR MANAGEMENT 169

Figure 6.18: Resource Calendar Management – Editing an entry

• Select the desired group or individual resource using the Filter and, if required, the Resource drop-
downs. Then, click the Add footer action.

• Add the Start Time and End Time that the group or resource will be unavailable for. Note that the start
and end time fields are the only fields that are mandatory.

• (Optional) You may choose to have the entry repeat the specified time block across several dates. To
do so, in the Repeat dropdown choose the repeating interval (Daily, Weekly, Monthly), then in the Until
field, add the date when the repeated entries should cease. An entry in this field denotes that the
group or resource will be unavailable from the start and end date range selected on the form until the
date selected in the Until field. When repeating, a number of entries will be added, each one spanning
from the specified start time to the specified end time, one entry for each date in the range of dates
specified. On the main Calendar page, entries spanning more than a single day will show the start and
end date in addition to the start and end time. If ‘None’ is selected in the Repeat dropdown, the entry
will apply only for the selected start and end date range.

• (Optional) Enter a percentage workload amount (between 1-100) in the Workload field. A workload
of less than 100% means the resource will only be partially unavailable for the specified period. For
example, a value of 75% means that the resource may also be allocated as a secondary resource to
another task at the same time, so long that task only requires 25% (or less) of the output of that resource
— that is, the resource can be shared across two or more tasks during the same period (an example
may be a part-time worker, or a surgical nurse who can work between two operating theatres at the
same time). The default workload is 100%.

• (Optional) Enter a comment which explains why the group or resource is unavailable for the period.

To edit an entry, click its Edit item action. The entry’s values will be copied to the relevant fields in the Edit
dialog. Edit the values as desired, then click the OK button the save the changes, or the Cancel button to
ignore the changes. If an entry spans more than one day, you may select any day of the span to edit it.

Finally, to remove an entry, click its Remove item action. Multiple selections may be removed using the
Remove footer action.

170 CHAPTER 6. THE RUNTIME ENVIRONMENT

6.7 Work Queues

Work items have an associated life cycle and when interacting with the Resource Service it is important to
understand the various stages that a work item can go through. An overview (not complete, but sufficient
for our purposes) of the life-cycle of a work item is shown in Figure 6.19. The labels of the arcs correspond
to the names of actions that users can click on to effect the state change.

Figure 6.19: Part of the Life-cycle of a Work Item

Each participant has access to their own work list – a graphical representation of their work via a web
page. For a user, a work item may have one of four statuses at any one time: Offered, Allocated, Started and
Suspended. Depending on a participant’s privileges, there are a number of actions that can be performed on
a work item for each status. Some are concerned with processing the work item, while others provide for
changes to the work item’s resourcing. Figure 6.20 shows an example of a user’s work list, with a work item
listed for each of the four statuses. Each item shows its Item ID, Specification ID and version, Documentation
(read-only), when it was created, and its current status. If a timer has been set for a work item, its expiry
time is also shown. Different item actions are available for each status.

6.7.1 Offered Work Items

Work items with Offered status may have potentially been offered to a number of participants, which means
there is no implied obligation to accept the offer, rather it is understood that the participant is one of a
group, any one of who may choose to perform the work item. For Offered work items, the item actions are,
left-to-right:

• Accept Offer: By accepting an offer, a participant takes responsibility for the execution of the work
item. The work item is moved from Offered status to Allocated status (if the start interaction is user-
initiated), or Started status (if the start interaction is system-initiated). This action removes the work
item from the work lists of all other participants that had been previously offered the work item.

• Accept & Start: This action works similarly to Accept Offer, except that if the work item’s start interac-
tion is user-initiated, the work item will instead be immediately started. Effectively, this concatenates
two user actions into one, simply as a convenience for the user.

• Selecting the third item action shows a context menu of other available actions for an Offered work
item. This action may contain one or both of the following, or may be disabled, depending on the
user’s privileges:

– Chain: This action will chain all the eligible work items of the case of which the work item is
a member to this participant. Chaining means that, when a participant chooses to enact it, each

6.7. WORK QUEUES 171

Figure 6.20: The My Worklist page

remaining work item for the case is routed directly to the participant and immediately started, but
only if the participant is a member of the defined distribution set for the work item. Chaining is
effectively a short-circuiting of a resource specification for a task, where the participant chooses
to automatically and immediately allocate and start any work item offered to him/her within
the chosen case. Chaining of work items for a case continues until the case completes, or the
participant turns off chaining via the Chained Items footer action (details below). A participant
must have the “Chain Work Item Execution” user privilege to enable chaining.

– Raise Exception: Will inform a worklet administrator to raise an ‘external’ work item exception.
See Chapter 8 for more details. This action is only available if the Worklet Service is available.

6.7.2 Allocated Work Items

Unlike an offer, a work item with Allocated status means that it has been allocated to that participant alone,
and comes with the understanding that the participant will at some time start the work item and perform
its work.

A participant may choose the following items actions on an Allocated work item, left-to-right:

• Start: The work item is started (i.e. begins executing).

• Skip: This action skips the execution of the work item – that is, the work item is immediately started
and then completed, allowing the process to continue according to its subsequent control-flow. A
participant must have the task privilege “Can Skip” to enable the skipping of a work item.

• Selecting the third item action shows a context menu of other available actions for an Allocated work
item. This action may contain one or more of the following, or may be disabled, depending on the
user’s and/or task’s privileges:

172 CHAPTER 6. THE RUNTIME ENVIRONMENT

– Deallocate: This action provides an authorised participant with a means of rejecting a work item
that has been allocated to them. The work item is removed from the participant’s work list, the
participant is removed from the original distribution set and the work item is redistributed as
per the resourcing specification for the task. A participant must have the task privilege “Can
Deallocate” to enable deallocation.

– Delegate: This action allows a participant to delegate responsibility for a work item to another
participant. The receiving participant must be subordinate to the delegating participant by Posi-
tion. The work item is moved from the work list of the delegator to the work list of the receiver.
A participant must have the task privilege “Can Delegate” and have subordinate staff to success-
fully deallocate a work item.

– Pile: When a work item is piled, the work item is immediately started for the participant. Fur-
thermore, each and every future instance of the work item across all cases of the same specification is
automatically allocated to the participant and started, completely ignoring any resourcing speci-
fication for the task from which the work item is created. To put it another way, by piling a work
item, a participant is entering into a contract with the Resource Service, asking that this work
item, and all future occurrences of such work items created from the same task description as the
original work item was created from, be immediately allocated and started to him/her. Piling
of such work items continues until the participant turns off piling for the task via the Piled Tasks
footer action, or the participant logs out (if so configured). A participant must have the “Can Pile’
task privilege to enable piling.

– Raise Exception: Will inform a worklet administrator to raise an ‘external’ work item exception.
See Chapter 8 for more details. This action is only available if the Worklet Service is available.

6.7.3 Started Work Items

Each work item with Started status has begun execution in a system sense, but may or may not have had
any actual work begun on it by the participant—such work is performed by the participant viewing, editing
and finally completing the work item.

A participant may take the following actions on a Started work item, left-to-right:

• View/Edit: This action will display the data parameters and their current values for the selected work
item, either on a dynamically generated form (see Figure 6.21) or, if specified, a custom form, allowing
the participant to view and/or edit the work item’s values. Any modified values are stored so that
this action can be repeated for a particular work item a number of times before completion, allowing
the work item to be processed by the participant in a progressive manner, if required. This action is
disabled if the work item has no data parameters to display or gather values for.

• Complete: Completes the selected work item. The work item is posted back to the engine, which
then progresses the case according to its control-flow. This action is initially disabled if the work item
contains mandatory editable data variables, and becomes enabled after the first view/edit and save of
the work item (i.e. if the participant did not complete the work item directly via the Edit form).

• Selecting the third item action shows a context menu of other available actions for an Started work
item. This action may contain one or more of the following, or may be disabled, depending on the
user’s and/or task’s privileges:

– Suspend: This action suspends the selected work item. The work item’s status is moved from
Started to Suspended. A participant must have the task privilege “Can Suspend” to successfully
suspend a work item.

– Reallocate Stateful: This action allows a participant to reallocate a work item to another partic-
ipant, maintaining all updates to the work item’s data parameters performed so far. The work
item is moved from the work list of the reallocator to the work list of the receiver.The receiving
participant must be subordinate to the reallocating participant by Position. A participant must

6.7. WORK QUEUES 173

Figure 6.21: An Example of a Dynamically Generated Form

have the task privilege “Can Reallocate Stateful” and have subordinate staff to successfully real-
locate a work item.

– Reallocate Stateless: Similar to “Reallocate Stateful”, except that the work item’s data values are
reset to the values that existed when the work item was first started (i.e. stateless reallocation). A
participant must have the task privilege “Can Reallocate Stateless” and have subordinate staff to
successfully reallocate a work item.

– New Instance: This action allows for the creation of a new instance of the selected work item; it
is enabled only for a work item of a multiple instance atomic task that allows dynamic creation
of additional work item instances.

– Raise Exception: Will inform a worklet administrator to raise an ‘external’ work item exception.
See Chapter 8 for more details. This action is only available if the Worklet Service is available.

6.7.4 Suspended Work Items

A work item with Suspended status may have been suspended via the Suspend item action on the Started
work item. Note that suspended work items must have already been started and not yet completed. A
Suspended work item has one available item action, Unsuspend, which resumes the work item, moving it
from Suspended status back to Started status.

6.7.5 Work list Footer Actions

In addition to the manual refresh action, a work list’ foot contains two other actions, that may or may not
be enabled, depending on privileges:

• Chained Cases: when selected, a popup will list all of the cases currently chained to the participant.
The participant may choose to cease the chaining of a case to them by clicking its Unchain item action.
Click anywhere off the list to close it. The Chained Cases footer action is disabled if there are no current
chained cases for the participant.

174 CHAPTER 6. THE RUNTIME ENVIRONMENT

• Piled Tasks: when selected, a popup will list all of the tasks that are currently piled to the participant.
The participant may choose to cease the piling of a task to them by clicking its Unpile item action. Click
anywhere off the list to close it. The Piled Tasks footer action is disabled if there are no current piled
tasks for the participant.

6.8 My Profile

The My Profile page (Figure 6.22) displays information about the currently logged-on participant: user ID,
name, email, administrator, privileges, and role, capability and position memberships. All fields are read-
only (they may be edited by an administrator via the Participants admin page), except for:

• the two password fields, where the participant may directly change their password if desired. Pass-
words must be at least 4 characters in length, and the ‘Password’ and ‘Confirm Password’ entries must
match.

• the two ‘Email Notifications’ check boxes, where if an email address has been provided, the participant
may choose to receive an email from the system to notify them when they have a new work item
appear on their offered and/or allocated work queues by selecting the relevant checkbox.

Figure 6.22: The My Profile Page

6.9. TEAM QUEUES 175

6.9 Team Queues

The My Team’s Worklist page shows groups of active work items in a single list. There are two types of
groupings possible:

• A participant who has been granted the user privilege ‘View All Work Items of Team’ may view a list
of all the active work items that appear on the work queues of all the participants who are subordinate
to them by Position.

• A participant who has been granted the user privilege ‘View All Work Items of Org Group’ may view a
list of all the active work items that appear on the work queues of all the participants that are members
of the same Org Group as the logged on participant (including the participant themselves). Figure 6.22
shows an example.

All of the information displayed on this page is read-only. A participant who has been granted both privi-
leges may switch between views using the tabs at the top of the grid; if they have been granted one of the
two privileges, the other tab does not appear.

Figure 6.23: The My Team’s Worklist Page

176 CHAPTER 6. THE RUNTIME ENVIRONMENT

Chapter 7

The Monitor Service

The Monitor Service is a basic service that provides a summary view of all currently active cases within the
YAWL engine. It consists of three screens that are viewed hierarchically – the case level, the workitem level
and the parameter level.

7.1 Installation and Logging On

To install the Monitor Service:

1. Copy the file monitorService.war to your tomcat/webapps directory, and wait for it to fully unpack.

2. Go to the Client Applications web form, and register an account for the Monitor Service with these
credentials:

• username: monitorService

• password: yMonitor

• description: The YAWL Monitor Service

To log onto the Monitor Service, browse to: http://localhost:8080/monitorService (see Figure 7.1).
The logon form has a green background to differentiate it from the Resource Service logon form. Any par-
ticipant registered via the resource service that has administration privileges, or the generic ‘admin’ account
(if enabled), can be used to logon to the Monitor Service.

7.2 Active Cases

The Active Cases form lists all of the currently executing case instances. Figure 7.2 shows an example.

In common with the other Monitor Service forms, the Active Cases form consists of a header, an information
bar and a table. Inside the header are buttons (reading from the right) to refresh the page contents and
to immediately logoff. In the table, clicking on a column heading will sort the contents on that column,
alternating between ascending and descending order. The information bar for the Active Cases form shows
a date and time of the last Engine (re)start.

The Active Cases table has columns for the case id, specification name, specification version and the data/-
time the case began. A single click on any Active Case table row will show the work item detail for that case
instance on the following form.

177

http://localhost:8080/monitorService

178 CHAPTER 7. THE MONITOR SERVICE

Figure 7.1: The Monitor Service logon screen

Figure 7.2: The Monitor Service Active Cases form

7.3 Work Items

Figure 7.3 shows an example of the Work Items of Selected Case form. The structure is similar to the Active
Cases Form, but with the additional detail:

• a button on the left of the header bar for returning to the Active Cases form

7.4. PARAMETERS 179

• the information bar, containing the data/time of the case start, the service that started the workitem
(in this example, the ‘DefaultWorklist’ – that is, the Resource Service), the participant who started the
workitem, and the current case-level data (as XML).

• a table of workitems created by the case instance, with columns case id, task id, current status, starting
service, enabled time, started time, completed time, timer status (if any) and timer expiry time (if
applicable).

Figure 7.3: The Monitor Service Work Items of Selected Case form

Note that all work items for the case are listed, both currently active and those that have already completed.
Also notice in this example that the first two tasks were started by the Resource Service, but the third by the
Worklet Service (since that task is mapped to the worklet service at design time. A single click on a table
row will show the associated parameters for that workitem.

7.4 Parameters

Figure 7.4 shows an example of the Parameters od Selected Work Item form:

• the information bar contains a list of logged events associated with this workitem from both the engine
and the resource service (where applicable)

• the table shows all the parameters defined for the workitem, with columns name, data type, data
schema (complex type definitions are listed here when used), the parameter’s usage type (inputOnly,
inputOutput, outputOnly), input and output mapping expressions (as applicable) and the input, de-
fault and last values.

Note that the current version of the monitor service does not support data persistence. That is, any infor-
mation stored about completed items is lost if the Engine is restarted. This represents the initial release of
the monitor service and it is envisaged that its functionality will grow in future versions.

180 CHAPTER 7. THE MONITOR SERVICE

Figure 7.4: The Monitor Service Parameters of Selected Work Items form

Chapter 8

The Worklet Service

This chapter contains instructions for installing and using the Worklet Dynamic Process Selection & Exception
Handling Custom Service for YAWL.

Each section describes one part in the process of setting up and using the Worklet Service. It is probably best
to work through the chapter from start to finish the first time it is read. This chapter focuses on the practical
use of the Worklet Service. For those interested, a more technical description of the inner operations of
worklets and the rule sets that support them can be found in the YAWL Technical Manual. A concise version
of the worklets approach can be found in [9], and of the exlets approach in [8]. The ultimate reference on
worklets and exlets is Michael Adams’ PhD thesis [7]. All these publications can be downloaded from
http://www.yawlfoundation.org.

All of the example parent specifications, worklet specifications and rule sets referred to in this chapter can
be found in the “samples” directory distributed with the service as part of the YAWL 4.0 (or later) release.

This icon indicates a hands-on method or instruction.

8.1 What is the Worklet Service?

An important point of extensibility of the YAWL system is its support for interconnecting external appli-
cations and services with the workflow execution engine, using a service-oriented approach. This enables
running workflow instances and external applications to interact with each other in order to delegate work,
to signal the creation of process instances and workitems, or to notify a certain event or a change of status
of existing workitems.

Custom YAWL services are external applications that interact with the YAWL engine through XML/HTTP
messages via certain endpoints, some located on the YAWL engine side and others on the service side.
Custom YAWL services are registered with the YAWL engine by specifying their location, in the form of
a “base URL”. Once registered, a custom service may send and receive XML messages to and from the
engine. More specifically, Custom YAWL services are able to check-out and check-in workitems from the
YAWL engine. They receive a message when an item is enabled, and therefore can be checked out. When
the Custom YAWL service is finished with the item it can check it back in, in which case the engine will set
the work item as completed, and proceed with the execution.

The Worklet Dynamic Process Selection & Exception Handling Service for YAWL comprises two distinct but
complementary services: a Selection Service, which enables dynamic flexibility for YAWL process instances;
and an Exception Handling Service, which provides facilities to handle both expected and unexpected pro-
cess exceptions (i.e. events and occurrences that may happen during the life of a process instance that are
not explicitly modelled within the process) at runtime. A brief introduction to each Service follows.

181

http://www.yawlfoundation.org

182 CHAPTER 8. THE WORKLET SERVICE

8.1.1 The Selection Service

The Worklet Dynamic Process Selection Service (or Selection Service) enables flexibility by providing a pro-
cess designer with the ability to designate a workitem in a YAWL process to be substituted at runtime with
a dynamically selected “worklet” – a discrete YAWL process that acts as a sub-net in place of the workitem
and so handles one specific task in a larger, composite process activity. The worklet is dynamically selected
and invoked, and may be created at any time, unlike a static sub-process that must be defined at the same
time as, and remains a static part of, the main process model.

An extensible repertoire (or catalogue) of worklets is maintained by the Service. Each time the Service is
invoked for a workitem, a choice is made from the repertoire based on the contextual data values within the
workitem, using an extensible set of rules to determine the most appropriate substitution.

The workitem is checked out of the YAWL engine, and then the selected worklet is launched as a separate
case. The data inputs of the original workitem are mapped to the inputs of the worklet. When the worklet
has completed, its output data is mapped back to the original workitem, which is then checked back into
the engine, allowing the original process to continue. Worklets can be substituted for atomic tasks and
multiple-instance atomic tasks. In the case of multiple-instance tasks, a worklet is launched for each child
workitem. Because each child workitem may contain different data, the worklets that substitute for them
are individually selected, and so may all be different.

The repertoire of worklets can be added to at any time, as can the rules set used for the selection process.
Thus the service provides for dynamic ad-hoc change and process evolution, without having to resort to
off-system intervention and/or system downtime, or modification of the original process specification.

8.1.2 The Exception Service

During almost every instance of a workflow process, certain things happen “off-plan”. That is, regardless
of how much detail has been built into the process model, certain events occur during execution that affect
the work being carried out, but were not defined as part of the process model. Typically, these events are
handled “off-system” so that processing may continue. In some cases, the process model will be modi-
fied to capture this unforeseen event in future instances, which involves an organisational cost (downtime,
remodelling, testing and so on).

The Worklet Dynamic Exception Handling Service (or Exception Service) provides the ability to handle these
events in a number of ways and have the process continue unhindered. Additionally, once an unexpected
exception is handled a certain way, that method automatically becomes an implicit part of the process speci-
fication for all future instances of the process, which provides for continuous evolution of the process, while
avoiding the need to modify the original process definition.

The Exception Service uses the same repertoire of worklets and dynamic rules approach as the Selection
Service. The difference is that, while the Selection Service is invoked for certain tasks in a YAWL process,
the Exception Service, when enabled, is invoked for every case and task executed by the YAWL engine, and
will detect and handle up to ten different kinds of process exception. As part of the handling process, a
process designer may choose from various actions (such as cancelling, suspending, restarting and so on)
and apply them at a workitem, case and/or specification level.

The Exception Service is extremely flexible and multi-faceted, and allows a designer to provide tailor-made
solutions to runtime process exceptions, as described in the following pages.

8.2 Installation

8.2.1 Worklet Installation Package

The Worklet Service is distributed as a default component of the YAWL environment, and so is included in
each of the various installer packages, and the CoreWebServices.zip file used for manual installations.

8.3. THE WORKLET SERVICE AND DYNAMIC FLEXIBILITY 183

8.2.2 Configuring the Worklet Service

Manual Installs Only: The workletService.war file should be located in the webapps directory of your Tomcat
installation (if necessary, refer to Chapter 2, Section 2.4 for more information). Then, the file needs to be
extracted to its own directory under webapps. The easiest way to achieve this is to simply start Tomcat - it
will automatically extract, install and start the Worklet Service.

Disabling Exception Handling

Exception handling is enabled by default. To disable it, a parameter has to be set in its web.xml file.

Open the Worklet Service’s web.xml file (in folder \webapps\workletService\WEB-INF\). Locate the param-
eter named EnableExceptionHandling. To disable exception handling, change the param-value to false (see
Figure 8.1). Save and close web.xml.

<context-param>
<param-name>EnableExceptionHandling</param-name>
<param-value>false</param-value>
<description>

’true’ to enable exception handling functionality
’false’ to disable

</description>
</context-param>

Figure 8.1: The Worklet Service’s web.xml file (detail)

Manual Installs Only: If the Resource and Worklet Services are installed on different servers, you will also
need to amend the ResourceServiceURL context parameter in the Worklet Service’s web.xml to refer to the
correct location.

Enabling the Worklist Extensions (optional)

The Worklet Service uses extensions (or ‘hooks’) in the YAWL default worklist handler (a component of the
Resource Service) to provide some web pages, which allow an administrator to raise ‘external’ exceptions
and to reject a worklet selection (see later in this chapter for more details).

To enable those extensions, locate and open the Resource Service’s web.xml file, which is located in the folder
\webapps\resourceService\WEB-INF\.
Locate the context parameter named InterfaceX BackEnd. By default, the entire parameter block is com-
mented out. Simply remove the comment tags (the <!-- and --> surrounding the context-param block –
see Figure 8.2). Save and close web.xml.

8.3 The Worklet Service and Dynamic Flexibility

Fundamentally, a worklet is nothing more than a YAWL process specification that has been designed to per-
form one part of a larger, or ‘parent’, specification. However, it differs from a decomposition or sub-net in
that it is dynamically assigned to perform a particular task at runtime, while sub-nets are statically assigned
at design time. Also, worklets can be added to the repertoire at any time during the life of a specification,
even while instances are running. So, rather than being forced to define all possible “branches” in a specifi-
cation when it is first defined, the Worklet Service allows you to define a much simpler specification that will

184 CHAPTER 8. THE WORKLET SERVICE

<!-- This param, when available, enables the worklet exception
service add-ins to the worklist. If the exception service
is enabled in the engine, then this param should also be
made available. If it is disabled in the engine, the
entire param should be commented out. -->

<!--
<context-param>

<param-name>InterfaceX_BackEnd</param-name>
<param-value>http://localhost:8080/workletService</param-value>
<description>

The URL location of the worklet exception service.
</description>

</context-param>
-->

Figure 8.2: The Resource Service’s web.xml file (detail)

evolve dynamically as more worklets are added to the repertoire for a particular task as different contexts
arise.

The first thing you need to do to make use of the service is to create a number of YAWL specifications – one
that will represent the parent (top-level) specification, and one or more worklets that will be dynamically
substituted for particular parent tasks at runtime.

The YAWL Editor is used to create both parent and worklet specifications. A knowledge of creating and
editing YAWL specifications, and the definition of data variables and parameters for tasks and specifications,
is assumed. For more information on how to use the YAWL Editor, see Chapter 4.

Before opening the YAWL Editor, make sure that the Worklet Service is correctly installed and that Tomcat
is running (see Section 8.2 of this chapter and/or Chapter 2 for more information).

8.3.1 Designing a Worklet-enabled Parent Specification

To define a parent specification, open the YAWL Editor and create a process specification in the usual man-
ner. Choose one or more tasks in the specification that you want to have replaced with a worklet at runtime.
Each of those tasks needs to be associated via the YAWL Editor with the Worklet Service.

Worklets may be associated with any atomic task, or any multiple-instance atomic task. Any number of
worklets can be associated with (i.e. comprise the repertoire of) an individual task, and a particular worklet
may be a member of any number of repertoires. Any number of tasks in a particular specification can be
associated with the Worklet Service.

For example, Figure 8.3 shows a simple specification for a Casualty Treatment process.1 In this process, we
want the Treat task to be substituted at runtime with the appropriate worklet based on the patient data
collected via the Admit and Triage tasks. That is, depending on each patient’s actual physical data and
reported symptoms, we would like to run the worklet that best handles the patient’s condition.

Here, we want to associate the Treat task with the Worklet Service. To do so, in the Editor choose the Custom
Service property in the Decomposition section of the Properties Pane, then select Worklet Service from the
dropdown list. That’s all that is required to make the top-level specification worklet-enabled.

The list of task-level variables for the Treat task, from a section of the Data Variables dialog in the Editor, is
shown (Figure 8.4). Each task-level variable maps to a net-level variable, so that in this example all of the
data collected from a patient in the first two tasks are made available to the Treat task. The result is that

1This and all other specifications referred to in this chapter are available in the samples folder of the Worklet Service installation.

8.3. THE WORKLET SERVICE AND DYNAMIC FLEXIBILITY 185

Figure 8.3: Example Top-level Specification

all of the relevant current case data for this process instance can be used by the Worklet Service to enable
a contextual decision to be made. Note that it is not necessary to map all available case data to a worklet
enabled task, only that data required by the Service to make an appropriate decision. How this data is used
will be discussed later in this chapter.

Figure 8.4: Decomposition variables for the ‘Treat’ task

The list of task variables in Figure 8.4 also show that most variables are defined as ‘Input Only’ – this is
because those values will not be changed by any of the worklets that may be executed for this task; they will
only be used in the selection process. Three variables are defined as ‘InputOutput’ so that the worklet can
“return”, or map back to these variables, data values that are captured during the worklet’s execution.

Next, we need to create one or more worklet specifications to execute as substitutes for the worklet-enabled
task.

186 CHAPTER 8. THE WORKLET SERVICE

8.3.2 Designing Worklet Specifications

When the parent Casualty Treatment specification is executed, the YAWL Engine will notify the Worklet
Service when the worklet-enabled Treat task becomes ready for execution. The Worklet Service will then
examine the data in the task and use it to determine which worklet to execute as a substitute for the task.
Any or all of the data in the task may also be mapped to the selected worklet case as input data. Once the
worklet instance has completed, any or all of the available output data of the worklet case may be mapped
back to the Treat task to become its output data, and the parent process will continue.

A worklet specification is a standard YAWL process specification, and as such is created in the YAWL Editor
in the usual manner. Figure 8.5 shows a simple example worklet to be substituted for the Treat top-level task
when a patient complains of a fever.

Figure 8.5: The TreatFever Worklet

In itself, there is nothing special about the TreatFever specification. Even though it will be considered by the
Worklet Service as a member of the worklet repertoire and may thus be considered a “worklet”, it remains
a standard YAWL specification and as such may be executed independently directly by the YAWL engine
without any reference to the Worklet Service.

The data variables that are required to be passed from the parent task to the worklet specification need to
be defined as net-level input variables in the worklet specification. Figure 8.6 shows the net-level variables
for the TreatFever worklet specification.

Figure 8.6: Net-level Variables for the TreatFever Specification

Note the following:

• Only a sub-set of the variables defined in the parent Treat task (see Figure 8.4) are defined here. It is
only necessary to map from the parent task those variables that contain values to be displayed to the
user, and/or those variables that the user will supply values for to be passed back to the parent task
when the worklet completes.

8.4. THE WORKLET SERVICE AND EXCEPTION HANDLING 187

• The definition of variables is not restricted to those defined in the parent task. Any additional variables
required for the operation of the worklet may also be defined here.

• Only those variables that have been defined with an identical name and data type to variables in the
parent task and with a Scope of ‘Input Only’ or ‘Input & Output’ will have data passed into them from
the parent task when the worklet is launched.

• Only those variables that have been defined with an identical name and data type to variables in the
parent task and with a Scope of ‘Output Only’ or ‘Input & Output’ will pass their data values back to
the parent task when the worklet completes.

In Figure 8.6, it can be seen that the values for the PatientID, Name and Fever variables will be used by the
TreatFever worklet as display-only values, while the Notes, Pharmacy and Treatment variables will receive
values during the execution of the worklet and will map those values back to the parent Treat task when the
worklet completes.

The association of tasks with the Worklet Service is not restricted to parent specifications. Worklet spec-
ifications also may contain tasks that are associated with the Worklet Service and so may have worklets
substituted for them, so that a hierarchy of executing worklets may sometimes exist. It is also possible to
recursively define worklet substitutions - that is, a worklet may contain a task that, while certain conditions
hold true, is substituted by another instance of the same worklet specification that contains the task.

As mentioned previously, any number of worklets can be created for a particular task. For the Casualty
Treatment example, there are (initially) five worklets in the repertoire for the Treat task, one for each of the
five primary conditions that a patient may present with in the Triage task: Fever, Rash, Fracture, Wound and
Abdominal Pain. Which worklet is chosen for the Treat task depends on which of the five is given a value of
true in the Triage task.

How the Worklet Service uses case data to determine the appropriate worklet to execute is described in
Section 8.6.

8.4 The Worklet Service and Exception Handling

In the previous section, we saw how the Worklet Service adds dynamic flexibility to a usually static YAWL
specification by substituting tasks with contextually chosen worklets at runtime. The Worklet Service uses
the same framework to also provide support for the myriad exceptions that may occur during the execution
of any process instance.

Almost every process instance, no matter how rigidly structured the business process, will experience some
kind of exception during its execution. While the word ‘exception’ conjures up ideas of errors or prob-
lems occurring within the executing process instance, the meaning in terms of workflow processes is much
broader: exceptions are merely events or occurrences that, for one reason or another, were not defined in the
process model. It may be that these events are known to occur in a small number of cases, but not enough
to warrant their inclusion in the process model, or they may be things that were never expected to occur
(or maybe never even imagined could occur). In any case, when they do happen, if they are not part of the
process model, without a system that supports exception handling, they must either be handled “off-line”
before the process continues (and the way they are handled is rarely recorded) or in some instances the
entire process must be cancelled.

Alternately, an attempt might be made to include every possible twist and turn into the process model so
that when such events occur, there is a branch in the process to take care of it. This approach may lead to
very complex models where much of the original business logic is obscured, and doesn’t avoid the same
problems occurring when the next unexpected exception occurs.

The Worklet Service addresses these problems by allowing you to define exception handling processes,
which may include worklets as compensation handlers, for workflow instances when certain events occur.
Rules are defined in much the same way as for dynamic flexibility, but with added features that enable you
to pause, resume, cancel or restart the task, case, or all cases of a specification, that triggered the exception.

188 CHAPTER 8. THE WORKLET SERVICE

Because the service allows you to define exception handlers for all exception events, and even to add new
handlers at runtime, all exception events are able to be captured “on-system”, so that the handlers are
available to all future occurrences of a particular event for the same context. And, since the handlers are
worklets, the original parent process model only needs to contain the actual business logic for the process,
while the repertoire of handlers grows as new exceptions arise or different ways of handling exceptions are
formulated.

IMPORTANT: While for dynamic flexibility the Worklet Service is linked explicitly to a task via the YAWL
Editor, and thus available whenever a worklet-enabled task is executed, exception handling is either enabled
(the default) or disabled (see Section 8.2). When it is enabled, it manages exception handling for all process
instances executed by the engine – explicitly linking a task or process to the service is not required.

8.4.1 Exception Types

This section introduces the ten different types of exception that are supported by the Worklet Service. Some
are related, while others are more discrete. Later sections will show examples of each of these.

When exception handling is enabled, the Worklet Service is notified whenever any of these exception types
occur for every process instance executed by the YAWL Engine. The Exception Service maintains a set of
rules (described in detail in Section 8.6) that are used to determine which exception handling process, if any,
to invoke. If there are no rules defined for a certain exception type for a specification, the exception event
is simply ignored by the service. Thus you only need to define rules for those exception events that you
actually want to handle for a particular specification.

Constraint Types

Constraints are rules which are applied to a workitem or case immediately before and after their execution.
Thus, there are four types of constraint exception:

• CasePreConstraint - case-level pre-constraint rules are checked when each case (i.e. process instance)
begins execution;

• ItemPreConstraint - item-level pre-constraint rules are checked when each workitem in a case be-
comes enabled (i.e. ready to be started);

• ItemPostConstraint - item-level post-constraint rules are checked when each workitem moves to a
completed status; and

• CasePostConstraint - case-level post constraint rules are checked when a case completes.

The Worklet Service receives notification from the YAWL Engine when each of these events occur, then
checks the rule set for the specification to determine, firstly, if there are any rules of that type defined for
the case, and if so, if any of the rules evaluate to true using the contextual data of the case or workitem. If
the rule set finds a matching rule for the exception type and data context, an exception handling process is
invoked.

Note that for each of the constraint events, an exception process is invoked for a rule when that rule’s
condition evaluates to true. So, for example, if the condition of an ItemPreConstraint rule for a Triage task was
“PrivateInsurance=true”, and that value of that variable in the workitem was also true, then the exception
process defined for that rule would be invoked.

Externally Triggered Types

Externally triggered exceptions occur, not through the case’s data values, but because something has hap-
pened outside of the process execution that has an affect on the continuing execution of the process. Thus,
these events are triggered by a user; depending on the actual event, a particular handler will be invoked.

8.4. THE WORKLET SERVICE AND EXCEPTION HANDLING 189

There are two types of external exceptions, CaseExternalTrigger (for case-level events) and ItemExternal-
Trigger (for item-level events). See later in this section for examples of each and how they are invoked.

TimeOut

A timeout event occurs when a workitem has an associated timer and the deadline set for that workitem is
reached. In this case, the Engine notifies the Worklet Service of the timeout event, and passes to the service
a reference to the timed-out workitem and each of the other workitems that were running in parallel with
the timed-out workitem. Therefore, timeout rules may be defined for each of the workitems affected by the
timeout (including the actual time-expired workitem itself).

ResourceUnavailable

This event occurs when an attempt has been made to allocate a workitem to a resource and the Resource
Service reports that the resource is unavailable to accept the allocation.

ItemAbort

An ItemAbort event occurs when a workitem being handled by an external service or application (as op-
posed to a human user) reports that the program has aborted before completion of the workitem. Thus,
these events are triggered externally by the delegated service or application.

ConstraintViolation

This event occurs when a data constraint has been violated for a workitem during execution (as opposed
to pre or post execution). These events are triggered externally by the service or application that has been
delegated execution of the workitem.

8.4.2 Exception Handling Primitives

For any exception event that occurs, a handling process may be invoked. Each handling process, also called
an exlet, contains a number of steps, or primitives, in sequence, and may be defined graphically, or via
directed choices, using the Worklet Editor plugin (see Section 8.6). Each of the handling primitives is intro-
duced below.

Suspend WorkItem - suspends (or pauses) execution of a workitem, until it is continued, restarted,
cancelled, failed or completed, or its parent case is cancelled or completed.

Suspend Case - suspends all “live” workitems in the current case instance (a live workitem has a status
of fired, enabled or executing), effectively suspending execution of the case.

Suspend All Cases - suspends all “live” workitems in all of the currently executing instances of the
specification in which the workitem is defined, effectively suspending all running cases of the specification.

Continue Workitem - continues (i.e. un-suspends) execution of the previously suspended workitem.

Continue Case - un-suspends execution of all previously suspended workitems for the case, effectively
continuing case execution.

190 CHAPTER 8. THE WORKLET SERVICE

Continue All Cases - un-suspends execution of all previously suspended workitems for all cases of
the specification in which the workitem is defined or of which the case is an instance, effectively continuing
all running cases of the specification.

Remove Workitem - removes (or cancels) the workitem; execution ends, and the workitem is marked
with a status of cancelled. No further execution occurs on the process path that contains the workitem.

Remove Case - removes (cancels) the case. Case execution ends.

Remove All Cases - removes (cancels) all case instances for the specification in which the workitem is
defined, or of which the case is an instance.

Restart Workitem - rewinds an executing workitem back to its initial state. That is, it resets the
workitem’s data values to those it had when it began execution.

Force Complete WorkItem - completes a “live” workitem. Execution of the workitem ends, and the
workitem is marked with a status of ForcedComplete, which is regarded as a successful completion, rather
than a cancellation or failure. Execution proceeds to the next workitem on the process path.

Force Fail Workitem - fails a “live” workitem. Execution of the workitem ends, and the workitem is
marked with a status of Failed, which is regarded as an unsuccessful completion, but not a cancellation -
execution proceeds to the next workitem on the process path.

Compensate - run a compensatory process (i.e. a worklet). Depending on previous primitives, the
worklet may execute simultaneously to the parent case, or execute while the parent is suspended (or even
removed).

Figure 8.7 shows an example of the graphical definition of an exception handing process. When invoked,
this handler will suspend the current case, then run a compensating worklet, then continue execution of the
case.

Figure 8.7: Example Exlet in the Worklet Rules Editor

Notes regarding exlet definitions:

8.5. WORKLET RULE SETS 191

• The primitives Suspend All Cases, Continue All Cases and Remove All Cases may be edited so that their
action is restricted to ancestor cases only. Ancestor cases are those in a hierarchy of worklets back to
the parent case (that is, where a case invokes a worklet which invokes another worklet and so on),
including the parent case itself.

• the workitem-level primitives cannot be used for a case-level exception handler (CasePreConstraint,
CasePostConstraint, CaseExternalTrigger).

• The Remove, Restart, Force Complete, and Force Fail primitives cannot be applied to a post-constraint
trigger, because such triggers only occur when a case or work item has completed, and therefore
no longer exist. Thus, for post-constraint triggers, only the Compensate primitive is applicable for
case-level exceptions, while only Compensate, and Suspend and Continue for the case or all cases, are
applicable for workitem level exceptions.

In the same manner as the Selection Service, the Exception Service also supports data mapping from a case
to a compensatory worklet and back again. For example, if a certain variable has a value that prevents
a case instance from continuing, a worklet can be run as a compensation, during which a new value can
be assigned to the variable and that new value mapped back to the parent case, so that it may continue
execution.

The full capabilities of the Exception Service are better described in the walkthroughs in Section 8.7. But
before we consider the walkthroughs, we must first look at exactly how the rule sets are formed and how
they operate, and then how to use the Worklet Rules Editor to manage rule sets for specifications. These
topics are discussed in the next sections.

8.5 Worklet Rule Sets

A ‘plugin’ for the YAWL Editor, called the Worklet Management plugin, but informally referred to as the Rules
Editor, manages the creation and modification of worklet rule sets for specifications. A worklet rule set is
basically a set of linked rules that are evaluated by the Worklet Service to determine when a worklet should
be launched, or an exception raised.

This section describes the structure and operation of worklet rule sets, while the next section shows how to
use the Rules Editor to display and manipulate them.

It is not necessary to have a full understanding of the structure of a rule set, nor the search and evaluation
algorithms used on them. The information presented here is intended more as a way of better understanding
the operations of the Rules Editor.

Again, the Worklet Selection and Exception Services work in very similar ways, but with some necessary
differences. In this section, the discussion of rule sets applies to both services, except where specified.

∗ ∗ ∗

Any YAWL specification may have an associated rule set maintained for it by the Worklet Service. A rule
set for a specification consists of a collection of rule trees. Each rule tree maintains a rule node hierarchy in
a binary-tree structure. When a rule tree is queried, it is traversed from the root node of the tree along the
branches, each node having its condition evaluated along the way. If a node’s condition evaluates to true,
and it has a true child, then that child node’s condition is also evaluated. If a node’s condition evaluates to
false, and there is a false child, then that child node’s condition is evaluated. When a terminal node is reached
(i.e. a node without any child nodes), if its condition evaluates to true, then that conclusion is returned as
the result of the tree traversal; if it evaluates to false, then the last node in the traversal that evaluated to true
is returned as the result. The root node of the tree is always a default node with a default true condition,
and so can only have a true branch.

Effectively, each rule node on the true branch of its parent node is an exception rule to the more general
one of its parent (that is, a refinement of the parent rule), while each rule node on the false branch of its

192 CHAPTER 8. THE WORKLET SERVICE

Figure 8.8: Example Rule Tree (Casualty Treatment spec)

parent node is an “else” rule to its parent (or an alternate to the parent rule). Referring to the selection rule
tree for the Casualty Treatment specification (Figure 8.8) as an example, the condition part is the rule that is
evaluated, and the conclusion is the name of the worklet selected by that rule if the condition evaluates to
true. For example, if the condition “Fever = true” evaluates to true, then the TreatFever worklet is selected
(via node 1); if it is false, then the next false node is tested (node 2). If node 2 is also false, then node 3 is
tested. If node 3 evaluates to true, then the TreatAbPain worklet is selected, except if the condition in its next
true node (node 7) also evaluates to true, in which case the TreatLabour worklet is selected.

Each rule set is associated with one specification, and may contain up to eleven sets of rule trees (or tree sets),
one for selection rules (i.e. for dynamic flexibility) and one for each of the ten exception types. Three of the
eleven relate to case-level exceptions (i.e. CasePreConstraint, CasePostConstraint and CaseExternalTrigger) and

8.6. THE WORKLET MANAGEMENT PLUGIN (OR RULES EDITOR) 193

so each of these will have only one rule tree in the tree set. The other eight tree sets relate to the workitem-
level (seven exception types plus selection), and so may have one rule tree for each task in the specification
- that is, the tree sets for these eight rule types may consist of a number of rule trees.

It is not necessary to define rules for all eleven rule types for each specification. You only need to define
rules for those types that you want to handle - any exception types that aren’t defined in the rule set file
are simply ignored. So, for example, if you are only interested in capturing pre and post constraints at
the workitem level, then only the ItemPreConstraint and ItemPostConstraint tree sets need to be defined (i.e.
rules defined within those tree sets). In this example, any Timeout exception events that occur during the
execution of the specification would be ignored by the Exception Service. Of course, rules for a Timeout
event could be added later if required (as could any of the other types not yet defined in the rule set).

To summarise the hierarchy of a rule set (from the bottom up):

• Rule Node: contains the details (condition, conclusion, id, parent and so on) of one discrete “ripple-
down” rule.

• Rule Tree: consists of a number of rule nodes in a binary tree structure.

• Tree Set: a set of one or more rule trees. Each tree set is specific to a particular rule type (timeout,
selection, etc.). The tree set of a case-level exception rule type will contain exactly one rule tree. The
tree set of an item-level rule type will contain one rule tree for each task of the specification that has
rules defined for it (not all tasks in the specification need to have a rule tree defined).

• Rule Set: a set of one or more tree sets representing the entire set of rules defined for a specification.
Each rule set is specific to a particular specification (regardless of version). A rule set will contain one
or more tree sets – one for each rule type for which rules have been defined.

This background information provides an understanding of the structure or rule sets, and sits as a lead-in
to the next section. For those interested, more detailed information is available via the references provided
at the beginning of this chapter.

8.6 The Worklet Management Plugin (or Rules Editor)

The Worklet Management Plugin for the YAWL Editor provides facilities for:

• Saving a worklet specification displayed in the YAWL Editor directly to the repertoire of worklets
available for use by parent specifications.

• Retrieving a worklet specification from the Worklet Service directly into the YAWL Editor for editing.

• Creating, browsing, exporting and removing rule sets and their rule nodes.

• Rejecting and replacing launched worklets with others following a rule tree update.

• Bulk uploading of worklet specifications and legacy rule sets stored as XML representations in files.

The plugin can be accessed via the YAWL Editor’s Plugins menu (Figure 8.9). There is also a toolbar (Fig-
ure 8.10) that performs the menu actions, which can be displayed via the Plugins→ Toolbars menu.

Configuration The plugin has configuration settings where the location of the Worklet Service, and the
credentials for logging on to the service, can be amended (Figure 8.11). These settings are similar to those
required by the Editor for connecting to the Engine and to the Resource Service (see Section 4.10 of Chapter 4
for more details). In most cases the default settings need not be changed.

194 CHAPTER 8. THE WORKLET SERVICE

Figure 8.9: Plugin Menu (detail)

Figure 8.10: Plugin Toolbar

Figure 8.11: The Rules Editor Settings Dialog

8.6.1 Loading and Saving Worklets

The Worklet Service maintains a set of worklets, which it provides for inclusion in rules (as selections or
compensations), and invokes at runtime as needed.

To save a worklet to the set, first create it or load it from disk into the Editor as you would any YAWL
specification. Ensure the Worklet Service is running at the configured location, then either click the Plugins

8.6. THE WORKLET MANAGEMENT PLUGIN (OR RULES EDITOR) 195

→Worklet Mgt→ Save menu item, or click the Save button on the worket management toolbar.

If there is an earlier version of the same worklet specification already existing in the set, it will be overwritten
with the newer version.

To load a worklet from the set into the Editor, first ensure there is no specification currently loaded in the
Editor. Ensure the Worklet Service is running at the configured location, then either click the Plugins →
Worklet Mgt→ Load menu item, or click the Load button on the worket management toolbar.

The worklet specification will be loaded into the Editor (but is not removed from the Worklet Service). It
can then be edited and re-saved to the worklet set (as above), as required.

8.6.2 Creating a New Rule Set and/or Adding a New Rule

As mentioned previously, it is not necessary to create tree sets for all of the rule types, nor a rule tree for
an item-level rule type for every task in a specification. Most typically, rule sets may have rules defined for
a few rule types, with some rules and/or tasks left undefined (remember that any events that don’t have
associated rules for that type of event are simply ignored).

It follows that there will be occasions when you want to add a new tree set to a rule set for a previously
undefined rule type, or add a new tree for a previously undefined task to an existing tree set, or add a new
rule to an existing rule tree. Also, when a new specification has been created, you may also want to create a
corresponding base rule set (if you want to handle selections and exceptions for the new specification).

For each of these situations, the Rules Editor provides a Add Rule dialog, which allows for:

• the definition of new rule nodes for existing rule trees;

• the definition of new rule trees (with any number of rule nodes) for existing tree sets (where there is a
task of the specification that has not yet had a tree defined for it within the tree set);

• the definition of new tree sets for specifications that have not yet had a tree set defined for a particular
rule type; and

• entirely new rule sets for specifications that have not yet had a rule set created for them.

IMPORTANT All added rules will be associated with the (parent) specification currently loaded in the
Editor.

To begin adding a new rule for the current specification, first ensure the Worklet Service is running at the
configured location, then either click the Plugins→Worklet Mgt→ Add Rule menu item, or click the Add Rule
toolbar button. The Add Rule dialog will be displayed (Figure 8.12).

On the Add Rule dialog:

• The Rule Type drop-down list allows you to select the desired rule type (selection and the ten exception
types) to add the new rule for.

• The Task Name drop-down list shows the names of the all atomic tasks for the currently loaded speci-
fication, from which the desired task can be selected. The Task Name list is disabled for case-level rule
types.

• The Condition field is where the new rule’s condition is added (see Section 8.6.3 below for details on
rule conditions).

• The Actions table is where action ‘primitives’ can be defined (see Section 8.6.4 below for details on rule
actions).

196 CHAPTER 8. THE WORKLET SERVICE

Figure 8.12: The Add Rule Dialog

• The Data Context panel shows the set of data variables defined for the task, or for case-level rule types,
the case-level input variables. You may add values for those variables to define a data context that
will allow the rule’s condition to evaluate to true (see Section 8.6.3 below for more). Formally, the new
rule’s data context becomes the cornerstone data for the new rule, and is required for determining the
correct location in the rule tree to insert the new rule.

• The Description area is where comments regarding the rule can be entered. Note the description is
provided simply as a place for further information, but has no bearing on the operation of the rule,
and so may be left empty if desired.

To add a new rule, select the rule type, and task (for item-level rule types), add a condition and one or more
actions applicable for the selected rule type, some appropriate values for the data context, and optionally
some descriptive text. Then, click the Add Rule button to add the rule and continue (if you’d like to add
further rules), or the Add & Close button to add the rule and close the dialog. Both these buttons are enabled
only when the entered information for the new rule is valid. You may clear entered input at any time before
a rule is added using the Clear button, and the Cancel button will close the dialog, ignoring any unsaved
information that has been entered.

When a rule is added via the Add Rule dialog, the following sequence occurs:

1. If a rule set for the specification does not currently exist, it is created.

2. If a tree set for the selected rule type does not currently exist in the rule set, it is created.

3. If a rule tree does not currently exist in the tree set for the rule type and task, it is created.

4. The new rule is added to the appropriate location in the rule tree (or added as its first child node if the
tree was created in step 3).

In other words, the appropriate rule framework is created as necessary on the creation of a new rule, trans-
parently from a user perspective.

8.6. THE WORKLET MANAGEMENT PLUGIN (OR RULES EDITOR) 197

8.6.3 Defining a Rule Condition

Every rule has a condition that is evaluated at various times during the execution of an instance of the
specification the rule was defined for. All conditions must finally evaluate to a simple Boolean value (i.e.
true or false).

Conditions are expressed as strings of operands and operators of any complexity, and sub-expressions may
be parenthesised. The supported operators are shown in Figure 8.13. Conditions may also be defined using
XPath and XQuery expressions. The variables used in a condition refer to the variables defined in the rule’s
data context, that is the variables defined for the relevant task or case.

Figure 8.13: Operators Supported

It is a requirement that a condition added to a rule must evaluate to true, based on its data context. For
example, a condition ‘Seating >10000’ will be deemed valid only if the value for the ‘Seating’ variable in
the data context pane exceeds 10,000. When adding a new rule via the Add Rule dialog, this means that you
must enter values for relevant variables, as required, to ensure the condition entered evaluates to true. If it
does not, an error will display under the condition, and the rule will not be able to be saved.

To assist in condition creation for new rules, when a value is entered in the data context, a simple condition
is automatically generated based on the value entered. The operator(s) in the rule can then be edited to suit,
as required. If a compound expression is required, place the appropriate logical operator at the end of the
condition – on adding a value to a different variable, the sub-condition will be appended to the existing
one (that is, if the current condition ends with a logical operator, newly generated sub-expressions will be
appended, if there is no logical operator, the entire condition is replaced with the new condition). Of course,
conditions may also be entered and/or edited directly in the Condition field.

Once the condition is valid for its data context (i.e. it evaluates to true), no error will appear under the
condition field.

When adding a rule to extend a rule tree at runtime (via the Replace Worklet dialog; see Section 8.6.7), the
data context displayed will reflect the actual data of the case or task itself, and thus may not be edited.
However, clicking on rows in the data context will auto-generate conditions in a similar manner to that
described above, using the actual data values rather than user-inserted values.

IMPORTANT To get the greatest benefit from the worklet rules framework, the recommended approach
is to initially define as few rules as possible for a (parent) specification, prior to the execution of specification
instances. That is, rules best reflect actual work practices when they are added during instance execution,
as a result of differences in the data contexts of each instance. When rules are added outside of instance
execution, assumptions must be made about the data values that will trigger selection of that rule at some
later runtime, and so may not reflect actual practices. So, add a few rules for selected rule types as desired,
then allow the rule tree to grow over time through instance executions. See Section 8.6.7 for details of adding
rules at runtime.

198 CHAPTER 8. THE WORKLET SERVICE

8.6.4 Defining an Action Set

An action set defines the actions that are to be taken when a rule is returned from a rule tree search, having
been evaluated as meeting the condition of the rule based on the current data context.

Each action set consists of one or more primitives, each primitive being an Action–Target pair. Every rule
requires the definition of an action set in order to be valid. For a Selection rule type, an action set will
consist of one or more primitives, each having an action of ‘select’ and a target of one or more worklets
to execute. An action set for a rule type other than Selection (i.e. an exception rule type), will consist of
a number of primitives forming an exception handling sequence (or Exlet) that will manage the handling
process invoked by the rule. Section 8.4.1 detailed the various actions that make up the available set of
exception handling primitives that may be sequenced to form an entire handling process. Depending on
the rule type selected, particular primitives may or may not be valid.

There are two methods for creating an action set: by adding rows and making choices in the Actions table,
or drawing a graphical representation of the exlet. Each method is described below.

The Actions Table

The Actions table allows you to build an action set by adding rows and making selections from the choices
that appear on each row. Each row represents one primitive (i.e. an Action–Target pair).

To add a row, click the add button on the Actions table toolbar. On each added row, click in the Action
cell to drop down a list of available actions for the currently selected rule type (only the valid actions for the
selected rule type are displayed).

Once an action has been chosen, click in the Target cell to make a choice from the available targets for the
chosen action. If a Selection or Compensate action has been chosen, a dialog will appear listing all available
worklets, from which one or more may be chosen to represent the worklets to be executed. If more than
one worklet is selected, they are executed concurrently. To execute a number of worklets sequentially, add a
sequence of Selection or Compensate actions. If the current rule type is Selection, only selection actions can be
added. Figure 8.14 shows the equivalent action set from the graphical representation of Figure 8.7 shown in
the Actions table of the Add Rule dialog.

Figure 8.14: Example Action Set in the Add Rule dialog

Each added primitive is auto-validated to ensure it is valid within itself (i.e. the action can be performed

8.6. THE WORKLET MANAGEMENT PLUGIN (OR RULES EDITOR) 199

on the target), valid for the current rule type, and that the entire sequence forms a valid action set. For
example, an action set will be deemed invalid if a Continue–Case primitive is not preceded by a Suspend-Case
primitive. If an action set fails validation, the affected table row(s) will be coloured red and an explanatory
message will be displayed under the table (Figure 8.15).

Figure 8.15: Example of an invalid Action Set (detail)

A row can be removed at any time by selecting it and clicking the remove button on the Actions table
toolbar.

Drawing Exlets Graphically

To open the graphical actions editor, click the editor button on the Actions table toolbar. The graphical
actions editor will open in a separate dialog. Note that the actions editor is disabled when the Selection rule
type is selected, since only one type of action is valid for that rule type.

The Actions Editor dialog (cf. Figure 8.7 on page 190) makes the process of defining an exception handling
sequence easier by allowing you to create the sequence graphically:

• To place a primitive on the drawing canvas, select the appropriate primitive from the toolbox on the
left, and then click on the canvas (Tip: mouse-over each primitive to see its name).

• The Compensate primitive will, when invoked at runtime, execute a worklet as a compensation process
as part of the overall exception handling process. When you place a Compensate primitive on the can-
vas, a dialog will display listing all available worklets known to the Worklet Service (see Section 8.6.1
for details on adding a worklet to a repertoire). Select one or more worklets from the list, then click
OK to complete the addition of the Compensate primitive to the canvas. You can also double click on a
Compensate primitive to view and/or change the selected worklets for that primitive.

• The primitives SuspendAllCases, RemoveAllCases and ContinueAllCases may be limited to ancestor cases
only by right-clicking on primitives of those kinds and selecting Ancestor Cases Only from the popup
menu. Ancestor hierarchies occur where a worklet is invoked for a case, which in turn invokes a
worklet, and so on. When a primitive is limited to ancestor cases, it applies the primitive’s action to
all cases in the hierarchy from the current case back to the original parent case, rather than all running
cases of the specification.

• Use the Arc Tool to define the sequence order. First, select the Arc Tool in the toolbox, then click and
hold on the first node, drag the mouse pointer until it is over the next node in the sequence, then
release the mouse. For an action set to be valid (and thus allowed to be saved) there must be a direct,
unbroken path from the start node to the end node (the start and end nodes are always displayed on
the canvas). Also, the action set will be considered invalid if there are any nodes on the canvas that are
not attached to the sequence. Finally, certain sequences of primitives may not be valid – please refer to
the status bar under the canvas for validation messages; a green ‘OK’ will appear when the sequence
is valid.

• Use the Select Tool to move placed primitives around the canvas. First, select the Select Tool in the
toolbox, then click and drag a primitive to a new location.

200 CHAPTER 8. THE WORKLET SERVICE

• The Align button will immediately align the nodes horizontally and equidistantly between the start
and end nodes (as in Figure 8.7).

• The Clear button will remove all added nodes to allow a restart of the drawing process.

• The Cancel button discards all work and returns to the previous dialog.

• The OK button will save the exlet and return to the previous dialog (the button will be disabled if the
exlet is invalid).

• To delete a primitive from the canvas, select the primitive and use the Delete or Backspace key.

When a valid sequence is saved, you will be returned to the previous dialog, where the action set will be
displayed textually in the Actions table. Changes made to the action set in the table will be reflected in its
graphical representation, and vice versa.

8.6.5 Browsing an Existing Rule Set

To browse an existing rule set, first ensure the Worklet Service is running at the configured location. Then,
either click the Plugins→Worklet Mgt→ View Rule Set menu item, or click the View Rule Set toolbar button.
The Rule Browser dialog will be displayed (Figure 8.16).

Figure 8.16: The Rule Browser dialog

The Rule Browser dialog provides for the viewing of all existing rules for the currently opened specification,
and for the optional removal of selected rules. Most of the components are the equivalents of those found

8.6. THE WORKLET MANAGEMENT PLUGIN (OR RULES EDITOR) 201

in the Add Rule dialog, with the addition of a graphical rule tree viewer on the left, from which rules may
be selected, and a text area at the bottom of the dialog that displays the “Effective Composite Rule” (more
below).

Choose a rule type from the selections available in the drop-down list to view rules for that type. If a case-
level rule type is chosen, its rule tree will be graphically displayed in the left of the dialog. For item-level
rule types, first choose a task from the selections available to show the rule tree for that task. Then, click on
a particular node on the rule tree to display the (read-only) content of that rule in the dialog. Note that only
those rule types and tasks that have rules already defined for them will appear as available selections in the
drop-down lists.

The “Effective Composite Rule” text area shows a representation of the conjunction of each rule’s condition
from the top of the rule tree to the selected rule. In other words, it shows the effective rule that will be
satisfied when that rule is reached, each part of the effective rule being drawn from the condition of each
individual rule along the path traversed through the tree.

To remove a rule, select it on the tree, click the Remove button, and confirm the removal in the dialog that
appears. If you remove a non-leaf rule node, that is a node that has a ‘child’ node, the rule tree will be
automatically reconstructed to allow for the removal (since the meaning of a ‘child’ condition depends on
its parent), and so may appear with a slightly different structure after the removal.

8.6.6 Exporting a Rule Set to File

A rule set may be exported in XML format to disk file, primarily to allow uploading of rule sets to Worklet
Service deployments in other locations.

To export a rule set, first ensure the Worklet Service is running at the configured location, then, either click
the Plugins → Worklet Mgt → Export Rule Set menu item, or click the Export Rule Set toolbar button. The
Export Selected Rule Sets dialog will be displayed, which lists all of the specifications that have rule sets
currently stored by the Worklet Service. Select one or more specifications, then click OK to export the
selected rule sets. Choose a directory to save to from the File . . . Save dialog that appears, then click Save to
save the file to disk. If you have chosen to export multiple rule sets, they will be saved to a compressed (zip)
file.

8.6.7 Rejecting a Selected Worklet (Extending a Rule Tree During Execution)

There are occasions when the worklet launched for a particular case, while the correct choice based on
the current rule set, turns out to be an inappropriate choice for the context of that instance. For example,
suppose a patient in a Casualty Treatment case presents with a rash and a heart rate of 190. While the current
rule set correctly returns the TreatRash worklet (via the rule with condition ‘Rash=true’), it may be desirable
to first treat the racing heart before the rash is attended to. In such a case, while the Worklet Service begins
execution of an instance of the TreatRash process, it is clear that a new rule needs to be added to the rule set
so that cases that have such a data context (i.e. a rash and a high heart rate) will be handled correctly, both
for the current instance and into the future.

IMPORTANT This is the preferred method for extending a rule set, since here we are dealing with the
context of an actual case driving the requirement of a new rule, rather than having to invent a data context
when adding rules via the Add Rule dialog.

To amend a rule set by adding a new rule following a worklet choice that is deemed inappropriate for its
data context, first ensure the Worklet Service is running at the configured location, then, either click the

202 CHAPTER 8. THE WORKLET SERVICE

Plugins→Worklet Mgt→ Replace Worklet menu item, or click the Replace Worklet toolbar button. The Replace
Worklet dialog will be displayed (Figure 8.17).

Figure 8.17: The Replace Worklet dialog

Again, most of the components are the equivalents of those found in the Add Rule dialog, with the inclusion
of a list of all currently executing worklets at the top of the dialog. Selecting an executing worklet will
display the details of the rule that selected the worklet in the dialog, below the executing worklets list. The
Rule Type and Task drop down lists are disabled, because the new rule will be added to the actual rule tree
for the rule type (and task) that caused the original worklet selection.

To add a new rule to accommodate the current case context, you are required to enter a different condition
(since the same condition will return the original worklet) and a different action set (since, if the same action
set is desired, there is no need to add a new rule). To aid in the creation of a new condition, the data context
table shows the actual values of the case or task variables of the selected parent instance that were used
to evaluate the rule set that derived the original selection. The data values that differ from those of the
cornerstone case (i.e. the data values that existed when the original rule was added) are shown in blue;
mouse over those values to see the cornerstone values in a popup. Values may be selected to form a new
condition (as for the Add Rule dialog), but may not be changed, since they represent the actual data context
of the current case.

8.6. THE WORKLET MANAGEMENT PLUGIN (OR RULES EDITOR) 203

IMPORTANT Since we have the case data for the original rule, and the case data for the new rule, to define
a condition for the new rule it is only necessary to determine what it is about the current case that makes it
necessary for the new rule to be added. That is, it is only where the case data items differ that distinguish
one case from the other, and further, only a subset of that differing data is relevant to the reason why the
original selection was inappropriate.

For example, there are many data items that differ between the two case data sets shown in Figure 8.17,
namely PatientID, Name, Sex, HeartRate, Blood Pressure readings, Height and Age. However, the only differing
data item of relevance here is HeartRate - that is the only data item that, in this case, makes the selection of
the TreatRash worklet inappropriate.

Clicking on the line “HeartRate” in the Data Context table copies that line to the Condition input. Thus, a
condition for the new rule has been easily created, based on the differing data attribute and value that has
caused the original worklet selection to be invalid for this case.

Note that it is not necessary to define the rule as “Rash = True & HeartRate = 190”, as might first be expected,
since this new rule will be added to the true (except) branch of the TreatRash node. Consequently, it will only
be evaluated if the condition of its parent, “Rash = True”, first evaluates to True. Therefore, any rule nodes
added to the true branch of a parent become exception rules of the parent. In other words, this particular
tree traversal can be interpreted as: “if Rash is True then return TreatRash except if HeartRate is also 190
then return ???” (where ??? = whatever worklet we decide to select for this rule - see more below).

Now, the new rule is fine if, in future cases, a patients heart rate will be exactly 190, but what if it is 191, or
189, or 250? Clearly, the rule needs to be amended to capture all cases where the heart rate exceeds a certain
limit; say 165.

To make the condition for the new rule more appropriate, the condition “HeartRate = 190” should be edited
to read “HeartRate > 165”.

After defining a condition for the new rule, the worklet to be launched when this condition evaluates to true
must be chosen as the target for the ‘select’ action in the Actions table, by clicking on the target and choosing
the appropriate worklet from the list.

TIP If a new worklet is required, create it first in the normal manner, then upload it to the Worklet Service
(cf. Section 8.6.1). It will then appear in the list of available worklets for addition to the action set.

Once all the fields for the new rule are complete and valid, click the Replace Worklet or the Replace & Close
button to:

• Add the newly created rule to the rule tree.

• Remove the selected executing worklet from the YAWL Engine

• Perform a new selection for the case/task, taking into account the new rule.

A message dialog will be shown soon after with the results of the replacement process sent from the Worklet
Service back to the Rules Editor, similar to Figure 8.18, with the case ID for the newly launched worklet.
After you click OK, if you chose the Replace Worklet button (instead of the Replace & Close button) you will
see the new worklet in the list of executing worklets, and the original worklet will be no longer listed.

8.6.8 Rules Maintenance

Over time, the Worklet Service’s repository may become bloated with rule sets that are no longer used,
or worklets that are not referenced by any rule. To maintain an efficient repository, cleanups should be
periodically run, as follows.

204 CHAPTER 8. THE WORKLET SERVICE

Figure 8.18: Information Message after Worklet Replacement

Removing a Rule Set It may be desirable to remove a complete rule set from the Worklet Service for a
specification that is no longer in use. To remove a rule set, first ensure the Worklet Service is running at the
configured location, then, either click the Plugins→Worklet Mgt→ Remove Rule Set menu item, or click the
Remove Rule Set toolbar button. The Remove Selected Rule Sets dialog will be displayed, which lists all of the
specifications that have rule sets currently stored by the Worklet Service. Select one or more specifications,
then click OK to remove the selected rule sets.

Removing ‘Orphaned’ Worklets Over time, the set of worklets stored in the Worklet Service repository
may contain worklets that are no longer referenced by any rule set. To remove them, first ensure the Worklet
Service is running at the configured location, then, either click the Plugins→Worklet Mgt→ Remove Orphans
menu item, or click the Remove Orphans toolbar button. The Remove Selected Unreferenced Worklets dialog will
be displayed, which lists all of the worklets currently stored by the Worklet Service that are not referenced
by any rule set. Select one or more worklets, then click OK to remove them from the repository.

8.6.9 Bulk Uploading of Worklets and Rule Sets

This section will be of particular interest to those who have used or are using previous versions of the Worklet Service
and/or the Worklet Rules Editor. With this version of Worklet Service, the old file-based repository is no longer
supported. Rather, all worklets and rule sets are be stored in database tables supported by the Worklet Service.
If you have a number of worklets, and/or you have a number of rule sets stored as XML files, you may
upload them in bulk using the Upload Files functionality of the Worklet Management plugin.

To upload existing worklet or rules files, first ensure the Worklet Service is running at the configured loca-
tion, then, either click the Plugins→Worklet Mgt→ Upload Files menu item, or click the Upload Files toolbar
button. A directory chooser dialog will display, allowing you to select the file location where the worklet
and/or rules files are stored. Choose the desired directory, then click OK. Any file with a .yawl extension in
that directory, or any of its subdirectories, will be added as a worklet to the service’s worklet repository, if it
contains a valid YAWL specification. Any file with a .xrs extension in that directory, or any of its subdirec-
tories, will be added as a rule set to the service’s rules repository, if it contains a valid worklet rule set (as
XML).

CRITICAL For a rule set to validate and operate successfully, it MUST contain the identifiers of the parent
specification it represents as attributes of its spec XML element, and the identifier value for each worklet
target of a ‘select’ or ‘compensate’ action. For each rule set file (.xrs) to be imported, first open it in a
text editor to ensure the specification identifier attributes are included. If they do not appear, open the
specification file (.yawl) in a text editor, then copy the required values from the locations indicated in the
example in Figure 8.19. Then, for each worklet named as a target in the rule conclusion, replace the name
with the identifier value (cf. Figure 8.20). Save the updated rules file. Once all rules files are verified to have
a valid structure, they can be bulk uploaded into the service.

8.7. WALKTHROUGH – USING THE WORKLET SERVICE 205

Figure 8.19: Assigned parent specification identifiers to rule file attributes

Figure 8.20: Assigned worklet specification identifier to rule’s compensate target

8.7 Walkthrough – Using the Worklet Service

The samples that come with the Worklet Service deployment (in the ‘samples’ directory) contains a number
of example specifications with worklet-enabled tasks, each with an associated rule set and a number of
associated worklets. This section will step through the execution of several of these examples. The first
two examples feature the Selection Service; the remainder the Exception Service. Knowledge of how to use
the YAWL system is assumed. Before we begin, make sure the Worklet Service is correctly installed and
operational, then use the Editor plugin described in the previous section to load the sample worklets and
rules into the Worklet Service’s repository (from the samples/worklets directory, and finally log into the YAWL
system.

A. Selection: Worklet-Enabled Atomic Task Example

The Casualty Treatment specification used in the previous sections of this manual is an example of a spec-
ification that contains an atomic task (called Treat) that is worklet selection-enabled. We’ll run through a
complete instance of the example specification to see how worklet selection operates.

Log on to YAWL with a user that has administrator or ‘can manage cases’ privileges. Navigate to the Case
Mgt page and upload the Casualty Treatment specification from the samples/parents directory of the service.
Then, launch a Casualty Treatment case from the same page.

The case begins by requesting a patient id and name - just enter some data into each field then click Start
(Figure 8.21).

Go to the Admin Worklist page, and check that the Directly to me footer action is selected. Locate the first task
in the case, Admit, After make a note of the case number, click on the Start item action of the Admit work

206 CHAPTER 8. THE WORKLET SERVICE

Figure 8.21: Launching a Casualty Treatment Case (detail)

item.

Figure 8.22: Editing the Admit Workitem (detail)

Go to the My Worklist page and click on the Edit action of the Admit work item. This item simulates an
admission to the Casualty department of a hospital, where various initial checks are made of the patient.
You’ll see that, in addition to the patient name and id specified when the case started, there are a number of
fields containing some medical data about the patient. Each field has some default data (to save time), but
you may edit any fields as you wish (Figure 8.22). When done, click the Complete button.

Go back to the Admin Worklist page and start the next work item, Triage, then go to your work list to view

8.7. WALKTHROUGH – USING THE WORKLET SERVICE 207

it. The Triage task simulates that part of the process where a medical practitioner asks a patient to nominate
their symptoms. You’ll see that the patient’s name and id have again been displayed for identification
purposes, in addition to five fields which approximate the medical problem. One field should be set to true
(checked), the others to false (unchecked).

Lets assume the patient has a fever. Check the Fever field, leave the rest unchecked, and then click the
Complete button (Figure 8.23).

Figure 8.23: Editing the Triage Workitem (detail)

There is nothing special about the first two tasks in the process; they are standard YAWL tasks and operate
as expected. However, the next task, Treat, has been associated (using the YAWL Editor) with the Worklet
Service. The Treat task simulates that part of the process that follows the collection of patient data and
actually treats the patient’s problem.

Of course, there are many medical problems a patient may present with, and so there are just as many
treatments, and some treatment methods are vastly different to others. In a typical workflow process, this
is the part of the process where things could get very complicated, particularly if we tried to build every
possible treatment for every possible medical problem as a conditional branch directly into the process
model.

The Worklet Service greatly simplifies this problem, by providing an extensible repertoire of discrete work-
flow processes (worklets) which, in this example, each handle the treatment of a particular medical problem.
By examining the case data collected in the earlier tasks, the Worklet Service can launch, as a separate case,
the particular treatment process for each case.

This method allows for a simple expression of the task in the ‘parent’ process (i.e. a single atomic Treat task
signifies the treatment of a patient, whatever the eventual treatment process may be) as well as the ability to
add to the repertoire of worklets at any time as new treatments become available, without having to modify
the original process.

When the Triage workitem is completed, the next task in the process, Treat, becomes enabled. Because it is
worklet-enabled, the Worklet Service is notified. The Service checks to see if there is a set of rules for selection
associated with this workitem, and if so the service checks out the workitem.

When this occurs, the YAWL Engine marks the workitem as executing (externally to the Engine) and waits
for the workitem to be checked back in. In the meantime, the Worklet Service uploads the relevant specifi-
cation for the worklet chosen as a substitute for the workitem and launches a new case for the specification.
When the worklet case completes, the Worklet Service is notified of the cases completion, and the service
then checks the original workitem back into the Engine, allowing the original process to continue.

We have completed editing the Triage workitem and clicked the Complete button. Go to the Admin Worklist
page. Instead of seeing the next workitem of the Casualty Treatment specfication listed (i.e. Treat), we see

208 CHAPTER 8. THE WORKLET SERVICE

that Test Fever, the first workitem in the TreatFever process, is listed in its place (Figure 8.24). The TreatFever
process has been chosen by the Worklet Service to replace the Treat workitem based on the data passed to
the service.

Figure 8.24: New Case Launched by the Worklet Service

Note that the case id for the Test Fever workitem is different to the case id of the parent process. Worklets run
as completely different cases to the parent process, but the Worklet Service keeps track of which worklets
are running for which parent cases. Go to the Case Mgt page to see that a Casualty Treatment case is still
running, and that the TreatFever specification has been loaded and it also has a case running (Figure 8.25).

Go back to the Admin Worklist page and start the Test Fever workitem, then go to your work list and open
it for editing. The Test Fever workitem has mapped the patient name and id values, and the particular
symptom - fever - from the Treat workitem checked out by the Worklet Service. In addition, it has a Notes
field where a medical practitioner can enter observations about the patient’s condition (Figure 8.26). Enter
some information into the Notes field, and then complete the workitem.

Start the next workitem, Treat Fever, and then edit it. This workitem has two additional fields, Treatment
and Pharmacy, where details about how to treat the condition can be entered (Figure 8.27). Enter some data
here, and then complete the workitem.

When the Treat Fever workitem is submitted, the worklet case is completed. The Worklet Service maps the
output data from the worklet case to the matching variables of the original Treat workitem, then checks
that workitem back in, effectively completing it and allowing the next workitem in the Casualty Treatment
process, Discharge, to execute.

Go to the Admin Worklist page, and you’ll see that the Discharge workitem is available (Figure 8.28). Edit it
to see that the data collected by the TreatFever worklet has been mapped back to this workitem. Submit it to
complete the case.

8.7. WALKTHROUGH – USING THE WORKLET SERVICE 209

Figure 8.25: TreatFever Specification Uploaded and Launched

Figure 8.26: Test Fever Workitem (detail)

B. Selection: Worklet-Enabled Multiple Instance Atomic Task Example

This walkthrough takes the List Maker example from Chapter 4 (YAWL Editor) and worklet-enables the
Verify List task to show how multiple instance atomic tasks are handled by the Worklet Selection Service.

The specification is called wListMaker. The only change made to the original List Maker specification was
to associate the Verify List task with the Worklet Service using the YAWL Editor. Figure 8.29 shows the
specification.

Go to the Case Mgt page and upload the wListMaker specification from the samples/parents directory. Then,
launch an instance of wListMaker.

When the case begins, enter three values for the Bob variable, as shown in Figure 8.30 - you will have to click
the add (+) button twice to get three input fields. Make sure you enter the values “one”, “two” and “three”
(without the quotes and in any order). Complete the form.

210 CHAPTER 8. THE WORKLET SERVICE

Figure 8.27: Treat Fever Workitem (detail)

Figure 8.28: Discharge Workitem with Data Mapped from TreatFever Worklet

Figure 8.29: The wListMaker Specification

Start and edit the Create List Items workitem. Since the values have already been entered there is no more to
do here, so click the Complete button to continue.

The next task is Verify List, which has been associated with the Worklet Service. Since this task is a multiple-
instance atomic task, three child workitem instances of the task are created, one for each of the Bob values
entered previously. The Worklet Service will determine that it is a multiple instance atomic task and will
treat each child workitem instance separately, and will launch the appropriate worklet for each based on the
data contained in each. Since the data in each child instance is different in this example, the Worklet Service

8.7. WALKTHROUGH – USING THE WORKLET SERVICE 211

Figure 8.30: Start of wListMaker Case with Three ‘Bob’ Values Entered (detail)

starts three different worklets, called BobOne, BobTwo and BobThree. Each of these worklets contains only
one task.

Go to the Admin Worklist page. There are three workitems listed, each one the first workitem of a separate
case (see Figure 8.31).

Figure 8.31: Workitems from each of the three Launched Worklet Cases

Go to the Case Mgt page to see that the BobOne, BobTwo and BobThree specifications have been uploaded and
launched by the Worklet Service as separate cases (Figure 8.32 – note the case numbers).

Go back to the Admin Worklist page and start all three workitems. Edit each of the Get Bob workitems, and

212 CHAPTER 8. THE WORKLET SERVICE

modify the values as you wish - for this walkthrough, we’ll change the values to “one - five”, “two - six”
and “three - seven” respectively.

Once you edit and complete each Get Bob workitem, the corresponding Verify List workitem from the parent
instance is automatically checked in to the Engine by the Worklet Service. Since the Bob worklets contains
only one task, editing and completing this workitem also completes the worklet case.

Figure 8.32: ‘Bob’ Specifications Loaded and Launched by the Worklet Service

After the third workitem has been edited and completed, and so the third Verify List workitem is checked
back into the Engine by the Worklet Service, the Engine determines that all the child items of the Verify List
workitem have completed and so the original (parent) process continues to its final workitem, Show List.
Start and edit the Show List workitem to show the changes made in each of the Get Bob worklets have been
mapped back to the original case (Figure 8.33).

C. Exception: Constraints Example

This walkthrough uses the OrganiseConcert specification to demonstrate a few features of the Worklet Ex-
ception Service. The OrganiseConcert specification is a very simple process modelling the planning and
execution of a rock concert. Figure 8.34 shows the specification as it appears in the YAWL Editor.

First, ensure the Exception Service is enabled (see Section 8.1.2 for details). Navigate to the YAWL Case
Mgt page and upload the OrganiseConcert specification from the samples/parents directory. Then, launch an
OrganiseConcert case.

As soon as the Engine launches the case, it notifies the Exception Service via a PreCaseConstraint event. If
the rule set for OrganiseConcert contains a rule tree for pre-case constraints, that tree will be queried using
the initial case data to determine whether there are any pre-constraints not met by the case. In this example,
there are no pre-case constraint rules defined, so the notification is simply ignored.

Tip: To follow what is happening, watch the log output in the Control Panel, the Tomcat command window,

8.7. WALKTHROUGH – USING THE WORKLET SERVICE 213

Figure 8.33: The Show List Workitem Showing the Changes to the Data Values

Figure 8.34: The OrganiseConcert Specification

or the contents of the log file catalina.out in Tomcat’s logs folder – both the exception and selection services
log all interactions between themselves and the Engine to the Tomcat window and to a log file.

Pre-case constraints can be used, amongst other things, to ensure case data is valid or within certain ranges
before the case proceeds, can be used to run compensatory worklets to correct any invalid data, or may even
be used to cancel the case as soon as it starts (in certain circumstances). As a trivial example of the last point,
launch an instance of the Casualty Treatment specification discussed in Walkthrough A, and enter “smith”
for the patient name when the case starts. The Casualty Treatment rule set contains a pre-case constraint rule
to cancel the case if the patient’s name is “smith” (presumably smith is a hypochondriac!). This also serves
as an example of exception rules and selection rules being defined within the same rule set.

Directly following the pre-case event, the Engine notifies the Service of a PreItemConstraint for the first
workitem in the case (in this case, Book Stadium). The pre-item constraint event occurs immediately the
workitem becomes enabled (i.e. ready to be checked out or executed). Like pre-case constraint rules, pre-

214 CHAPTER 8. THE WORKLET SERVICE

item rules can be used to ensure workitems have valid data before they are executed. The entire set of case
data is made available to the Exception Service - thus the values of any case variables may be queried in the
ripple-down rules for any exception type rule. While there are pre-item constraint rule trees defined in the
rule set, there are none for the Book Stadium task, so this event is also ignored by the service.

The Book Stadium workitem may be started in the normal fashion. This workitem captures the seating
capacity, cost and location of the proposed rock concert. These may be changed to any valid values, but for
the purposes of this example, just accept the default values as given (Figure 8.35).

Figure 8.35: The Book Stadium Workitem

When the workitem is submitted, a PostItemConstraint event is generated for it by the Engine. There are no
post-item constraint rules for this workitem, so again the event is just ignored. Then, a pre-item constraint
notification is received for the next workitem (Sell Tickets). This workitem records the number of tickets
sold, and the price of each ticket. Enter a price of $100 per ticket, and 12600 as the number of tickets sold,
and then complete the workitem (Figure 8.36).

Notice that the entered number of tickets sold (12600) is slightly more than 50% of the venue’s seating
capacity (25000). The next workitem, Do Show, does have a pre-item constraint rule tree, and so when
it becomes enabled, the rule tree is queried. The effective composite rule for Do Show’s pre-item tree (as
viewed in the Rules Editor), is shown in Figure 8.37.

In other words, when Do Show is enabled and the value of the case data attribute “TicketsSold” is less
than 75% of the seating capacity of the venue, we would like to suspend the workitem, run the compen-
satory worklet ChangeToMidVenue, and then, once the worklet has completed, continue (or unsuspend) the
workitem. Following the logic of the ripple-down rule, if the tickets sold are also less than 50% of the
capacity, then we want instead to suspend the workitem, run the ChangeToSmallVenue worklet, and then
unsuspend the workitem. Finally, if there has been less than 20% of the tickets sold, we want instead to
suspend the entire case, run a worklet to cancel the show, and then remove (i.e. cancel) the case.

8.7. WALKTHROUGH – USING THE WORKLET SERVICE 215

Figure 8.36: The Sell Tickets Workitem (detail)

Figure 8.37: Effective Composite Rule for Do Shows Pre-Item Constraint Tree

In this example, the first rule’s condition evaluates to true, for a “Tickets Sold” value of 12600 and a seating
capacity of 25000, so the child rule node on the true branch of the parent is tested. Since this child node’s
condition evaluates to false for the case data, the rule evaluation is complete and the last true node returns
its conclusion.

The result of all this can be seen in the Admin Worklist page. The Do Show workitem is marked as “Sus-
pended” and thus is unable to be selected for starting; while the ChangeToMidVenue worklet has been
launched and its first workitem, Cancel Stadium, is enabled and may be started.

By viewing the log file, you will see that the ChangeToMidVenue worklet is being treated by the Exception Ser-
vice as just another case, and so receives notifications from the Engine for pre-case and pre-item constraint
events also.

Start Cancel Stadium, accept the default values, and complete. Notice that the worklet has mapped the data
attributes and values from the parent case. Next, start the Book Ent Centre workitem - by default, it contains
the data values mapped from the parent case. Since we are moving the concert to a smaller venue, change
the values to match those in Figure 8.38, then complete the workitem.

The third workitem in the worklet, Tell Punters, is designed for the marketing department to advise fans and
existing ticket holders of the change in venue.

Start the workitem. Notice that the values here are read-only (since this item is meant to be a notification
only, the person assigned does not need to change any values). This is the last workitem in the worklet, so
when that is completed, the engine completes the case and notifies the Exception Service of the completion,

216 CHAPTER 8. THE WORKLET SERVICE

Figure 8.38: The Book Ent Centre Workitem (detail)

at which time the service completes the third and final part of the exception handling process, i.e. continuing
or unsuspending the Do Show workitem so that the parent case can continue.

Back at the Admin Worklist page, the Do Show workitem is now shown as enabled and thus is able to be
started. Check it out now and notice that the data values entered in the worklet’s Book Ent Centre workitem
have been mapped back to the parent case.

D. Exception: External Trigger Example

It has been stated previously that almost every case instance involves some deviation from its specified
process model. Sometimes, events occur completely removed from the actual process model itself, but affect
the way the process instance proceeds. Typically, these kinds of events are handled “off-system” so there is
no record of them, or the way they were handled, kept for future executions of the process specification.

The Worklet Exception Service allows for such events to be handled on-system by providing a means for
exceptions to be raised by users externally to the process itself. The Organise Concert specification will again
be used to illustrate how external triggers work.

Go to the Case Mgt page and launch another instance of the Organise Concert specification. Execute and
submit the first workitem.

If the Worklet Exception Service has been correctly enabled in the Resource Service (cf. Section 8.2.2), the

8.7. WALKTHROUGH – USING THE WORKLET SERVICE 217

Worklet Actionn item action will appear for each of the started cases on the Case Mgt page. Clicking the item
action will display a context menu with two options: Raise Exception and Reject Worklet2. To raise a case-level
external exception, go to the Case Mgt screen, and select the Organise Concert case from the list of running
cases, then click the Raise Exception button (Figure 8.39).

Figure 8.39: Case Mgt Screen, OrganiseConcert case running

The Raise Case Level Exception dialog is now displayed. See Figure 8.40 for the list of case-level external
triggers defined for the Organise Concert specification.

This list contains all of the external triggers either conceived when the specification was first designed or
added later as new kinds of exceptional events occurred and were added to the rule set. Notice that at the
bottom of the list, the option to add a New External Exception is provided – that option is explained in detail
in Walkthrough F.

For this example, let’s assume the band has requested some refreshments for backstage. Select that exception
trigger and submit the form. When that exception is selected, the conclusion for that trigger’s rule is invoked
by the service as an exception handling process for the current case. Go to the Admin Worklist page where
it can be seen that the parent case has been suspended and the first workitem of the compensatory worklet,
Organise Refreshments, has been enabled.

Organise Refreshments informs the staff member responsible to buy a certain number of bags of M & Ms (first
workitem), then to remove all the candies except those of a specified colour, before delivering them to the
venue (mapped in from the parent case). Once the worklet has completed, the parent case is continued.

Item-level external exceptions can be raised from the My Worklist page by selecting the clicking the Other
Actions item action, then selecting Raise Exception from the context menu that appears. You will be taken
to the Raise Item Level Exception dialog where the procedure is identical to that described for case-level
exceptions, except that the item-level external exception triggers, if any, will be displayed.

External exceptions can be raised at any time during the execution of a case – the way they are handled may
depend on how far the process has progressed (via the defining of appropriate rule tree or trees).

2If the Worklet Actions item action doesn’t appear, the exception service has not been correctly enabled for the Resource Service (cf.
Section 8.2.2).

218 CHAPTER 8. THE WORKLET SERVICE

Figure 8.40: Raise Case-Level Exception Screen (Organise Concert example)

E. Exception: Timeout Example

When a workitem has an associated timer that times out (expires), the Engine notifies the Exception Service
and informs it of all the workitems running in parallel with the timed out item. Thus, rule trees can be
defined to handle timeout events for all affected workitems (including the timed out item itself).

The specification Sales gives an simple example of how a timeout exception may be handled (Figure 8.41).
Upload the specification via the Case Mgt screen, and then launch the case.

Figure 8.41: The Sales Specification

The first workitem, Fill Order, simulates a basic purchase order for a bike. Check out the Fill Order workitem,
accept the default values, and submit it. Once the order has been filled, the process waits for payment to
be received for the order, before it is archived. The Receive Payment task has an associated timer, and so

8.7. WALKTHROUGH – USING THE WORKLET SERVICE 219

waits for some specified time to receive payment. For the purposes of this example, the wait time is set to 5
seconds (Figure 8.42).

Figure 8.42: The Set Timer Detail dialog for the Receive Payment task

While the deadline is reached, the Engine notifies the Exception Service of the timeout event. The timeout
tree set is queried for the Receive Payment workitem. There is a tree defined for the Receive Payment task with
a single rule (see Figure 8.43).

Notice the rules condition: “isTimerExpired(this)”:

• isTimerExpired is an example of a defined function that may be used as (or as part of) conditional
expressions in rule nodes.

• this is a special variable created by the Worklet Service that refers to the workitem that the rule is
defined for and contains, amongst other things, all of the workitem’s data attributes and values.

Tip: The Worklet Service provides developers with an easily extendible class where functions can be defined
and then used in conditions. See Section 8.8 for more information about defining functions.

In this case, the condition tests if the timer has expired for the Receive Payment workitem. If it has (thus
payment for the order has not yet been received) then the conclusion will be executed as an exception
handling process, launching of the worklet SendReminder.

The SendReminder worklet consists of three tasks: Send Request, the timer-enabled Receive Reply, and Archive
– again, for the purposes of the example, the timed workitem waits for 5 seconds before timing out. When
the task times out, the Exception Service is notified. There is also a single timeout rule defined for the Receive
Reply task – its condition is again “isTimerExpired(this)” but this time, the rule’s conclusion differs, as can
be seen in Figure 8.44.

File Cancellation is the first task of the Cancel Order worklet. What we now have is a hierarchy of worklets:
case (Sales) is suspended pending completion of worklet case (Send Reminder) which itself is suspended
pending completion of worklet case (Cancel Order). Worklets can invoke child worklets to any depth. Notice
the third part of the handling process: “remove ancestorCases”. Ancestor Cases are all cases from the current
worklet case back up the hierarchy to the original parent case that began the exception chain (as opposed to
“allCases” which refers to all currently executing cases of the same specification as the case which generates
the exception). So, when the Cancel Order worklet completes, the Send Reminder case and the original parent
Sales are both cancelled by the Exception Service.

F. Rejecting a Worklet and/or Raising a New External Exception

The processes involved in rejecting a worklet (launched either as a result of the Selection or the Exception
Service) and raising a new external exception (that is, an external exception which has not yet been defined
- formally an unexpected exception) are virtually identical and so are discussed together in this section.

When the Worklet Service launches a worklet, it selects the most appropriate one based on the current case
context and the current rule set for the parent case. As discussed previously in this chapter, there may be

220 CHAPTER 8. THE WORKLET SERVICE

Figure 8.43: Rule Browser Showing Single Timeout Rule for Receive Payment Task

Figure 8.44: Rule detail for Receive Reply

occasions where the selected worklet does not best handle the current case’s context (perhaps because of a
new business rule or a more efficient method of achieving the goal of a task being found). In any event, a
worker may choose to reject the worklet that was selected.

IMPORTANT: The rejection of a selected worklet is a legitimate and expected occurrence. Each rejection
allows for the addition of a new exception rule (or a rule on the true branch of its parent) thus creating a
‘learning’ system where all events are handled online. When the new rule is added as a result of the rejection,
it will return the correct worklet for every subsequent case that has a similar context. Thus, rejecting a
worklet actually refines the rule set for a specification.

To reject a selected worklet, go to the Case Mgt screen and click on the Worklet Actions item action of the
worklet you wish to reject. Then, select the Reject Worklet option (see Figure 8.39). The Reject Worklet Selection
dialog will be displayed (Figure 8.45). This screen displays the Specification and Case ID for the selected

8.7. WALKTHROUGH – USING THE WORKLET SERVICE 221

worklet. Enter a proposed title (or name) for the new worklet and an explanation of reason for the rejection
(in plain text), and (optionally) suggest a summary of a suitable process for the new worklet, then submit
the form.

Figure 8.45: Reject Worklet Selection Screen

To raise an unexpected exception at the case-level, follow a similar process at the Case Mgt screen, but
instead click the Raise Exception button. On the Raise Case-Level Exception screen (discussed in Walkthrough
D), select New External Exception from the list of options, then enter a proposed title, a description of the
scenario (what has happened to cause the exception) and a (optionally) a proposal or description of how
the new worklet will handle the exception (in plain text), and then submit the form. See Figure 8.46 for an
example using the Organise Concert specification. Raising an item-level exception is identical, except that
the Raise Exception button is clicked on the Work Queue screen, rather than the Case Mgt screen.

The information entered on the form is sent to a Worklet Service Administrator, who will action the rejection
or new exception by adding a new rule to the rule set and (optionally) having the Rules Editor notify the
service to reselect the new worklet using the updated rule set (see Section 8.6 on the Rules Editor for more
detail). The process requires a user with administrator privileges to action the rejection request, rather than
allowing all users access to update rule sets.

Note: Rejecting a worklet selection or raising a new unexpected exception will automatically suspend the
parent case until such time as the rejection or unexpected exception is actioned by an administrator.

If the exception service is enabled, select the Worklet Admin page from the left side menu called Worklet
Admin (for example Figure 8.39). This page allows administrators to view the current list of outstanding
worklet rejections and requests for new exception handlers. It also allows administrators to view the details
of each outstanding rejection and exception request and to mark it as completed (removing them from the
list) after it has been actioned (Figure 8.47).

222 CHAPTER 8. THE WORKLET SERVICE

Figure 8.46: Example of a New Case-Level Exception Definition

8.8 Defining New Functions for Rule Node Conditions

In Section 8.5, we saw how rule conditions could be defined using a combination of arithmetic operators
and operands consisting of data attributes and values found in workitems and at the case level of process
instances. In Walkthrough E, an example of a defined function was given (isTimerExpired), using the special
variable this.

The Worklet Service provides a discrete class that enables developers to extend the availability of such
defined functions. That is, a developer may define new functions that can then be used as (or as part of
composite) conditional expressions in rule nodes. That class is called RdrConditionFunctions - the source
code for the class can be found in the org.yawlfoundation.yawl.worklet.support package. Currently, this class
contains a small number of examples to give developers an indication of the kinds of things you can do with
the class and how to create your own functions.

The class code is split into four sections:

• Header;

• Execute Method;

8.8. DEFINING NEW FUNCTIONS FOR RULE NODE CONDITIONS 223

Figure 8.47: Administration Tasks Screen (detail)

• Function Definitions; and

• Implementation.

To successfully add a function, these rules must be followed:

1. Create the function (i.e. a normal Java method definition) and add it to the ‘function definitions’ section
of the code. Ensure the function:

• is declared with the access modifier keywords private static; and

• returns a value of String type.

2. Add the function’s name added to the array of ‘ functionNames’ in the header section of the code.

3. Add a mapping for the function in the ‘execute’ method, using the examples as a guide.

Once the function is added, it can be used in any rule’s conditional expression.

Let’s use the max function as a simple example walkthrough (to be read in conjunction with the source code
for the class). The first thing to do is define the actual function in the function definition section. The entire
function is shown in Figure 8.48.

Figure 8.48: Max function

224 CHAPTER 8. THE WORKLET SERVICE

Notice that the function has been declared as private static and returns a String value. Next, the name of the
function, max, has to be added as a String value to the functionNames array in the header section of the code,
see Figure 8.49.

Figure 8.49: Adding the name

Finally, we need to map the function name to the execute method, which acts as the interface between the
class’s functions and the Worklet Service. The execute method receives as arguments the name of the function
to execute, and a HashMap containing the functions parameters (all are passed as String values). The execute
method is essentially an if ... else if block, the sub-blocks of which call the actual functions defined. The
section of the execute method for the max function is shown in Figure 8.50.

Figure 8.50: Execute method for the max function

The first line checks to see if the name of the function passed to the execute method is “max”. If it is, the
parameters passed with the function (as String values in the HashMap “args”) are converted to integer values
and finally the max function is called - its return value is passed back from the execute method to the calling
Worklet Service.

The getArgsAsInt method called in the snippet above is defined in the Implementation section of the class’s
code. It is here that you can create private methods that carry out the external work of the any functions
defined, as required.

The definition of isNotCompleted is slightly different, since the parameter passed is the special variable this.
The this variable is essentially a WorkItemRecord that contains descriptors of the workitem the rule is testing,
enabling developers to write methods that test the values in the variable and act on those values accordingly.
If it is for a case-level rule, this contains the case data for the instance invoking the rule. Both versions of
this are passed as a string-ified JDOM Element format. See the YAWL source code for more details of the
WorkItemRecord class, if required.

What the execute methods sub-block for the isNotCompleted function looks like is shown in Figure 8.51.

The block gets this variable as a String from the “args” HashMap and then calls the actual isNotCompleted
method (see Figure 8.52).

Notice again that the function has been declared as private static and returns a String value. The first line of
the function converts the String passed into the function to a JDOM Element, and then extracts from that
Element a value for “status” (being one of the data attributes contained in the this variable). It then calls
another method, defined in the Implementation section, called isFinishedStatus (see Figure 8.53).

All methods defined in the Implementation section must also be declared as private static methods - how-
ever, they can have any return type, so long as the value returned from the execute method back to the

8.8. DEFINING NEW FUNCTIONS FOR RULE NODE CONDITIONS 225

Figure 8.51: Execute method’s sub-block for isNotCompleted function

Figure 8.52: Calling the actual isNotCompleted method

Figure 8.53: Definition of method isFinishedStatus

Worklet Service has been converted to a String value.

Of course, you are not restricted to querying the this variable as a WorkItemRecord - it is passed simply as a
JDOM Element that has been converted to a String and so can be queried via a number of different methods.

The objective of the RdrConditionFunctions class is to allow developers to easily extend the capabilities of the
Worklet Service by providing the means to test for other things in the conditional expressions of rule nodes
other than the process instance’s data attributes and values. It is envisaged that the class’s functions can be
extended into areas such as process mining, querying resource logs and external data sets.

226 CHAPTER 8. THE WORKLET SERVICE

Chapter 9

Other Services

Because of the open design of the YAWL interfaces, it is possible to design a YAWL Custom Service that will
perform the work of a task instance using a wide variety of techniques to meet particular needs. Previous
chapters have described the Resource, Worklet and Proclet Services, which, while quite complex, are exam-
ples of the sorts of things that can be achieved using Custom Services. This chapter briefly describes a few
other custom services in the deployed YAWL set, their varied purposes and their use. Please consult the
YAWL Technical Manual for detailed information on the development of YAWL Custom Services.

9.1 Document Store

The Document Store service maintains uploaded files passed as data in process instances. That is, a task may
contain a variable of YDocumentType that is used to store a reference to an uploaded data file (e.g. documents,
spreadsheets, in fact any type of file) (cf. Section 4.14). That file can then be accessed (downloaded), and
updated (uploaded) during the life of the process instance.

To minimise the amount of data actually passed to and from the YAWL Engine, uploaded files are stored
directly in the Document Store and only a reference to the file is passed to/from the Engine.

To enable this file storage feature, the Document Store must first be installed (cf. Section 2.4.3) and registered
with the Engine as a client application (cf. Section 6.4.3). The Document Store has a configuration setting in
its web.xml file labelled RetainStoredDocsOnCaseCompletion that determines whether an uploaded filed is
archived or removed from the Document Store when a case completes or is cancelled (cf. Section 6.1). The
setting defaults to a ‘false’ value.

9.2 Web Service Invoker Service

The Web Service Invoker Service (WSInvoker) provides a mediation layer between the Engine and external
SOAP web services. In this way, a task can be associated with an operation of a SOAP web service at design-
time, and at runtime task instances are routed to the specified SOAP web service through the WSInvoker.
Without this layer, a Custom Service would have to be developed between each and every SOAP web service
and the Engine on an individual web service basis.

A task is associated with WSInvoker by selecting it from the dropdown list of the Custom Service property in
the Decomposition section of the Property Pane in the Editor and choosing the WSInvoker from the list of
available services. The service will supply to the task three variable definitions which will require supplied
values when the service is invoked at runtime:

• YawlWSInvokerWSDLLocation: specifies the URI of the WSDL file describing the web service to
invoked;

227

228 CHAPTER 9. OTHER SERVICES

• YawlWSInvokerPortName: specifies the port binding that the web service listens on for interaction
with external clients and protocols; and

• YawlWSInvokerOperationName: specifies the name of the operation to be executed within the web
service.

In addition, any data values that are required for the web service’s operation must also be specified within
the task-level variables; these are passed to the specified web service when it is invoked. The WSInvoker
Service then waits until the external service responds, then returns a mapping of the resultant data to the
task instance’s output data variables. Note that when a task is registered with the Invoker Service at design
time, the Editor automatically populates the task’s input variables with the required data attributes above.

At present, the WS-Invoker Service supports only SOAP over HTTP and request-response and one-way
interactions (out-in and out-only message exchange patterns).

9.3 SMS Service

The SMS service can use any third-party SMS Gateway web service to send and receive SMS messages and
pass the data into and out of the YAWL Engine. In this way, participants can view, update and complete task
instances via mobile phones and other SMS capable devices. The service is pre-configured in its web.xml
file with four values – a userid and password for an SMS account known to the specified SMS Gateway
web service, and its send and receive URI’s. These values will be particular to each SMS Gateway service
provider.

Like the WSInvoker Service, when a task is associated with SMS Service via its Custom Service property in
the Editor and choosing the SMS Service from the list of available services, the service will supply three
variables required for the successful operation of the service:

• SMSMessage: The message text to send to the mobile device;

• SMSPhoneNumber: The phone number of the mobile device to call; and

• SMSReplyMessage: The message text that is returned from the mobile device.

When invoked at runtime, the SMS Service will logon to the SMS Gateway provider using the userid and
password supplied via the web.xml file, then if successful will pass the SMSMessage and SMSPhoneNumber
values to to the service’s ‘Send’ URI. The SMS Gateway provider will send the text message to the mobile
device identified by the phone number. It will then wait for a reply message from the device, which it
will pass back through the SMSReplyMessage variable which can then be mapped back to a corresponding
net-level variable in the process for display in a subsequent task.

9.4 Mail Service

The Mail Service was introduced in YAWL 2.2 as a replacement for or alternative to the Mail Sender Service.
The new Mail Service allows a task to be designated as an email task, which can then be easily configured to
send an email to a recipient, using SMTP.

The Mail Service has several parameters that are required to be configured to successfully send an email.
Most of the parameters can have default values set for them in the service’s web.xml file, so that at runtime a
user only has to supply values for those remaining parameters that haven’t had default values set. The full
list of parameters are:

• host: The URL of the SMTP mail host. In the service’s web.xml, a sample host value of smtp.gmail.
com has been supplied, but should of course be changed to whatever host you use to send mail.

smtp.gmail.com
smtp.gmail.com

9.4. MAIL SERVICE 229

• port: The port number that the host listens on for SMTP traffic. Again, a default value is supplied (for
the gmail host) but should be changed to the correct port for your host.

• mailUserName: The username of a registered account on the host that is capable of sending mail.

• mailUserPassword: The corresponding password for the supplied username.

• senderName: the actual name to associate with the email sender.

• sendAddress: the email address of the sender, that is the address of the email account corresponding
to the mailUserName account on the given host.

Figure 9.1: Task-level variables for a Mail Service associated task

Note that any, all or none of the parameters listed above may be given default values in the service’s
web.xml. Each one without a default value will be requested from the user at runtime. Note also that
you may include parameters that already have default values in the task decomposition so that at runtime
values are requested from the user – when the user supplies a value for which a default value already exists,
the runtime user supplied value will take precedence.

Figure 9.1 shows the Editor’s Data Variable dialog for a task that has been associated with the Mail Service.
Notice that the list of task variables has been populated by the service. For each of the default parameters
supplied via web.xml, you may simply remove the matching task variable from the list for all those param-
eters you don’t want the user to override at runtime (e.g. Figure 9.2 has removed the variables for all the
default values). The output-only variable result is used by the service to return the outcome of the send (i.e.
either a success or error message).

Figure 9.2: Task-level variables for a Mail Service task, default variables removed

Generally, a Send Email task associated with the Mail Service will be preceded by another task the will collect
the required non-default values from a user at runtime.

230 CHAPTER 9. OTHER SERVICES

To send HTML formatted content, the text entered into the content field should be wrapped in CDATA tags.
For example, to send the content “Hello World!” in bold text:

<![CDATA[Hello World!]]>

9.5 Twitter Service

The Twitter Service is a simple service that provides for the posting of status updates (i.e. ‘tweets’) to Twitter.

When a task is associated with Twitter Service in the Editor’s Task Decomposition dialog, the service will
supply two required variables:

• status: (Input-Only) The message text to send to Twitter;

• result: (Output Only) A response message received from Twitter that indicates the success or failure
of the status update.

When invoked at runtime, the Twitter Service will connect to Twitter and, through its API using the config-
ured userid and password, post the status update (if connection was successful) and put Twitter’s response
text in the result variable.

Note: the Twitter API requires a set of four authorised OAUTH tokens to log on, which are stored in the ser-
vice’s twitter4j.properties file (twitter4j1 is the name of the third party library the service uses to communicate
with Twitter). Two OAUTH tokens, oauth.consumerKey and oauth.consumerSecret identify the YAWL Twit-
terService and should not be changed. The other two tokens, oauth.accessToken and oauth.accessTokenSecret de-
fine the username and password of the Twitter account being used to logon to Twitter – those in the proper-
ties file are for the default twitter user YAWLProc. To use the service with a different Twitter user account, re-
place the oauth.accessToken and oauth.accessTokenSecret values with those generated from the other account. A
simple guide to generating tokens for another twitter account can be found here: http://goo.gl/cyHaR

9.6 Digital Signature Service

The purpose of the digital signature is not to hide the data on the form (captured as an XML ComplexType)
but to ensure the authenticity of the information. This custom service is composed of two functions, the first
one is to sign the XML form and the second one is to check the validity of the signature created by the first
one.

Figure 9.3: An overview of the production of a digital signature

1http://twitter4j.org

http://goo.gl/cyHaR
http://twitter4j.org

9.6. DIGITAL SIGNATURE SERVICE 231

9.6.1 Signing a Document

1. The Document is hashed with a hashing algorithm to encrypt it and to reduce its volume.

2. The Private Key is extracted from inside the key store certificate ‘p12’. To do this, we need the pub-
lisher’s password which is only known by him/her.

3. Combine the private key, the Document fingerprint and the X.509 certificate to create the digital sig-
nature using ‘PKCS#7’ encryption.

4. The fingerprint and the private key are used to calculate the signature itself and the X.509 certificate
gives the publisher details.

A digest-SHA1 of the document is included in the signature. Since the Document has a unique fingerprint,
the digital signature only applies to this document.

The p12 certificate is protected by a password and is only used to sign the document. The public certificate
X.509 contains the information about the signer and the public key that can be used to check the validity of
the signature. It is public because anybody should be able to access the content of the signature to verify it.
But without the private key it cant be reproduced.

9.6.2 Verification of the Digital Signature

Figure 9.4: An overview of the verification of a digital signature

1. Calculate the document fingerprint with the same algorithm than the signer used.

2. To verify the Digital Signature you need first to extract the certificate X.509. The certificate X.509
contains all the information needed to identify a user. It is not encrypted and can be seen freely. We
use the public key contained in this certificate to decrypt the signature using the same algorithm.

3. If the signature matches the digest message of the document then the signature is considered valid.

Anybody can verify the signature since the public key is contained in the X.509 certificate. It is hard to
reproduce this signature as the private key is only contained in the certificate PKCS#12 and it needs the
owners password to be extracted. Also if the signature is slightly modified the digest function won’t match
the signature anymore.

9.6.3 Interaction between a YAWL custom form and the service

Before you can use the digital signature function, the user will need to create a digital certificate. These
certificates are provided by a CA (certificate authority), for example Thawte Consulting for X.509 certificates.

232 CHAPTER 9. OTHER SERVICES

It is advisable to use a certificate provided by a trusted third party like CA but you can also create your own
certificates using some open source tools.

9.6.4 Creating a New Certificate

New certificates can be easily created using Key tool IUI, which can be downloaded from: http://www.
softpedia.com/get/Security/Security-Related/KeyTool-IUI.shtml.

The first step is to create an empty Key Store PKCS12 locked with your password. Save the empty key store
in a chosen location (Figure 9.5).

Then use this key Store to generate the key pair and the X.509 certificate by filling in the owner information
(Figure 9.6).

When the key pair is created you can review the certificate information produced (Figure 9.7).

http://www.softpedia.com/get/Security/Security-Related/KeyTool-IUI.shtml
http://www.softpedia.com/get/Security/Security-Related/KeyTool-IUI.shtml

9.6. DIGITAL SIGNATURE SERVICE 233

Figure 9.5: Creating an Empty Keystore

Figure 9.6: Generating the Key Pair

When the key pair is ready you can export the certificate via Export→ Private Key’s first signing certificate
file→ as simple certificate file (Figure 9.8).

234 CHAPTER 9. OTHER SERVICES

Figure 9.7: The Created Certificate

Figure 9.8: Exporting the Certificate

9.6. DIGITAL SIGNATURE SERVICE 235

9.6.5 Using the Digital Signature Service

First please make sure that you have copied the DigitalSignature.war in your tomcat/webapps folder. In
the simplest case of using the Digital signature service you will need at least three tasks (Figure 9.9).

Figure 9.9: Example YAWL Process

The first task ‘Fulfil Document’ is a user task that can contain any complex type of document (i.e. a variable)
you want to be signed. You can define your complex type in the ‘Data Type Definition’ dialog of the Editor,
as the example in Figure 9.10.

Figure 9.10: Data Definition for ‘Document’ type

The second task ‘Sign Document’ redirects the user to a custom form which is located inside the ‘DigitalSig-
nature.war’ deployment. We use a custom form to directly deal with the user instead of a standard custom
service because private data like the key store password needs to be hidden from YAWL as the data is passed
from one task to another as a net variable, which is accessible by any other task. You can define the Custom
Form URI for the task by selecting the task’s Custom Form property in the Properties Pane of the Editor,
and entering the URI of the form in the dialog shown.

You also have to define the task data that will be used by the custom form. In this example, their names
should be ‘Document’ and ‘Signature’. Note that scope of the ‘Signature’ variable is InputOutput.

You may also have to change the paths in the ‘upload.jsp’ file: where the default values are ‘localhost’, they
may have to be changed to the actual address where the service runs (if it is not running locally):

236 CHAPTER 9. OTHER SERVICES

String Path = "http://localhost:8080/DigitalSignature/files/";
String redirectURL = "http://localhost:8080/resourceService/" +

"faces/userWorkQueues.jsp?workitem=" +
wir.toXML();

The Signature will be checked with the certificate loaded in the jsp page and it will provide the document
which has been signed. Note that the ‘Document’ variable is an “anyType” type, to be able to check back
any complex type you may have signed.

Chapter 10

Using openLDAP for Authentication

10.1 General Setup

10.1.1 Installing openLDAP

Since there are lots of manuals and tutorials on the Internet and the installation differs from OS and distri-
bution we will describe the openLDAP server installation in a very abbreviated manner. We demonstrate
the installation in a Debian Linux 9 environment.

1. Install openLDAP using the Debian package manager:

apt-get install slapd ldap-utils

During this process an admin user will be created and a password has to be set.

2. Configure openLDAP in more detail by executing

dpkg-reconfigure slapd

We suggest the following settings:

Omit config? No

DNS domain name my.domain.com (replace with your company/project domain to be used in openL-
DAP)

Organization name MyCompany (replace with your company/project name)

Password: password

Backend MDB

Remove DB when purged? No

Move old DB? Yes (Be careful when an LDAP configuration exists already)

10.1.2 Installing the YAWL openLDAP schema

To install the YAWL openLDAP schema you need the file yawl.ldif and for the sake of completeness the
file yawl.schema (yawl.ldif is actually derived from yawl.schema whereby the latter is easier to read
for humans). Both files can be found in the folder src/.../resourcing/datastore/orgdata/ldap_schema/

1. Copy the file yawl.ldif and yawl.schema to the folder /etc/ldap/schema

2. Run the following command as root:

ldapadd -Q -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/yawl.ldif

237

238 CHAPTER 10. USING OPENLDAP FOR AUTHENTICATION

After executing this command the system should display

adding new entry "cn=yawl,cn=schema,cn=config"

3. You can check whether the schema has been installed successfully by listing the folder containing the
active schemas. The list should contain the yawl.ldif file.

ls /etc/ldap/slapd.d/cn\=config/cn\=schema
cn={0}core.ldif
cn={1}cosine.ldif
cn={2}nis.ldif
cn={3}inetorgperson.ldif
cn={4}yawl.ldif

4. You can use the object classes and attributes defined in the YAWL schema now.

10.1.3 Enabling openLDAP in YAWL

To activate the synchronisation with openLDAP in YAWL two changes are necessary:

1. configure the LDAP server connection

2. activate the YAWL LDAP adapter class

Configuring the openLDAP server connection settings Locate the file LDAPSourceExtended.properties
(see folder resourceService/WEB-INF/classes/), open it, set the following connection settings and
save the file:

host the openLDAP server host name or IP address, e.g. localhost

port the port to be used to connect to the server, e.g. 389

securityprotocol leave empty for plain sockets, set to ssl for SSL encryption

adminusername LDAP admin username (DN), e.g. cn=admin,dc=my,dc=company,dc=com

adminpassword LDAP admin password

authentication LDAP authentication type, usually simple

binding the top binding in LDAP to search for users and resource entities, e.g. dc=my,dc=company,dc=com

Activating the openLDAP Adapter in YAWL To activate the LDAP synchronisation in YAWL locate and
open the web.xml file of the resource service in resourceService/WEB-INF/. Set the following param-
eters:

OrgDataSource set this to LDAPSourceExtended

ExternalUserAuthentication set this to true

OrgDataRefreshRate set the synchronisation interval in minutes, e.g. 60

Now please restart YAWL.

10.2. POPULATING THE OPENLDAP SERVER USING THE YAWL OPENLDAP SCHEMA 239

10.1.4 Connect to and Browse the openLDAP Server

There are several methods to connect to an openLDAP server. For an easy start we recommend Apache
Directory Studio. In the Connections area create a new connection and enter the following settings:

Host IP address or server/domain name

Port 389 (default if not encrypted)

User cn=admin,dc=my,dc=company,dc=com if you entered my.company.com as DNS domain name
in section 10.1.1 step 2

Password Password, as defined in section 10.1.1 step 2

Now you should be able to connect to the openLDAP server and to browse the directory.

10.2 Populating the openLDAP Server using the YAWL openLDAP Schema

YAWL employs a comprehensive model to reflect organisational resources like roles, positions, organisa-
tional groups etc. As an alternative to the user and resource management integrated in the ResourceService
YAWL also supports the integration of external services like an openLDAP server. This way, user accounts
and additional attributes like password, email address, phone number, group memberships can be stored
centrally and queried by numerous systems. openLDAP will be used for authorisation during the login as
well. Remark: When openLDAP is used for managing resources, the forms in the YAWL Control Center are
set to read-only. The YAWL openLDAP schema supports all resource entities (and their relations) which are
available in the ResourceService, in particular Participants, Roles, Capabilities, Positions, OrgGroups.

In the following sections each of these resource entities and how to define them in openLDAP will be ex-
plained in detail.

10.2.1 Participants

Every (existing or new) user in openLDAP has to be explicitly declared as YAWL user also known as partic-
ipant”. This has to be done by adding the auxiliary object class yawlParticipant” to the LDAP entry which
has to be based on the structural object class person” or inetOrgPerson”. The yawlParticipant object class
comes with the attributes listed in table 10.1. Figure 10.1 demonstrates the usage in openLDAP and the
result in YAWL.

10.2.2 Roles

In the YAWL Control Center roles are assigned to a user by opening the user object and selecting the roles
the user owns. In LDAP the principle is inverted: to assign a role to a user, he or she has to become a
member of a role.

For every role a node of type yawlRoleUniqueNames” has to be created in the LDAP directory. It is recom-
mended to all roles (and other YAWL resource entities) in a dedicated organisational unit (ou) for YAWL see
figure 10.2 for an example).

Members are added to a role by adding the attribute uniqueMember” for each member and pointing to the
DN of the participant. (Remark: there is no validation check that the DN entered really is a user). Roles can
be related to each other by having a BelongsTo” relation to another role. In LDAP this is implicitly defined
by nesting the roles (see again figure 10.2: role1.1” belongs to role1”).

The attributes available for a role are listed in table 10.2. Figure 10.3 demonstrates the usage in openLDAP
and the result in YAWL.

240 CHAPTER 10. USING OPENLDAP FOR AUTHENTICATION

Table 10.1: Attributes for participants

Attribute name Existence Type Description
cn MUST String Common name. Name of node in LDAP. Will not be used in

YAWL (unlike roles, capabilities etc.)
givenName MUST String Given name/first name of the user
uid MUST String User id of the user, used as login name in YAWL
sn MUST String Surname/last name of the user
Password MUST Password Password of the user, used for authentication
yawlNotes MAY String YAWL related notes about participant
description MAY String General description of user (since this is an LDAP standard

field this information might be visible in other systems)
yawlInternalId MAY String Internal id that will be used in YAWL (see section migration).

If not set, the DN will be used as internal id in YAWL.
yawlPrivilege* MAY Boolean Sets YAWL privileges for the participant (defaults to FALSE if

attribute is not present)
Attributes are: yawlPrivilegeAdministrator, yawlPrivilegeCanChainExecution, yawl-

PrivilegeCanChooseItemToStart, yawlPrivilegeCanManageCases, yawlPrivilegeCan-

Reorder, yawlPrivilegeCanStartConcurrent, yawlPrivilegeCanViewOrgGroupItems,

yawlPrivilegeCanViewTeamItems

Table 10.2: Attributes for roles

Attribute name Existence Type Description
cn MUST String Common name. Name of node in LDAP. Will be used in

YAWL as role name
yawlNotes MAY String YAWL related notes about role
description MAY String Description of role
yawlInternalId MAY String Internal id that will be used in YAWL (see section migra-

tion). If not set the DN will be used.
displayName MAY String Name to be displayed. Will be used as label in YAWL.
uniqueMember MAY String (DN) Defines a member for this role using the DN of the partici-

pant. Can be used multiple times.

10.2. POPULATING THE OPENLDAP SERVER USING THE YAWL OPENLDAP SCHEMA 241

Figure 10.1: A participant modelled in LDAP and in YAWL

242 CHAPTER 10. USING OPENLDAP FOR AUTHENTICATION

Figure 10.2: A role hierarchy modelled in LDAP

10.2.3 Capabilities

The capabilities are defined analogous to roles by using the object class yawlCapabilityUniqueNames”.
Please see the table in the previous section for the description of the attributes available. In contrast to roles,
capabilities do not have relations to each other, i.e. nesting capabilities is possible, but will not be considered
in the organisation model in YAWL.

Figure 10.4 demonstrates the usage in openLDAP and the result in YAWL.

10.2.4 Positions and OrgGroups

Positions and orgGroups are basically defined analogous to roles and capabilities by using the object classes
“yawlPositionUniqueNames” and “yawlOrgGroupUniqueNames”. In addition to the attributes described
above, orgGroups have a group type being one of Group, Team, Unit, Branch, Division, Cluster, Department.
In LDAP the group type can be defined by using the attribute “yawlOrgGroupType”. Set the value to one
of the list options above. If an invalid value is given, YAWL will use the default type “Group”.

There are three types of relations for and between positions and orgGroups:

1. A position can report to another position: to define this relation add the attribute “yawlPositionRe-
portsTo” to the position node and set the value to the DN of the position to report to.

2. An orgGroup can belong to another orgGroup: this can be (analogous to roles) represented by nesting
orgGroups in the LDAP directory tree.

3. A position can belong to an orgGroup: this relation can be defined using two different approaches (if
both options are used, option (b) will have precedence!):

(a) Nest the position node inside the orgGroup node.

(b) Add the attribute “yawlPositionOrgGroup” to the position node and set the value to the DN of
the OrgGroup.

10.2. POPULATING THE OPENLDAP SERVER USING THE YAWL OPENLDAP SCHEMA 243

Figure 10.3: A role modelled in LDAP and in YAWL

244 CHAPTER 10. USING OPENLDAP FOR AUTHENTICATION

Figure 10.4: A capability modelled in LDAP and in YAWL

10.3. MIGRATING TO LDAP 245

10.3 Migrating to LDAP

If you plan to migrate an existing YAWL installation which uses the default resource management of the
YAWL ResourceService to connect to an LDAP server, you certainly have existing specifications and running
cases. Resources (e.g. participants, roles) are referenced in the specification and in running cases by an
internal YAWL id.

It is possible to continue using these ids by specifying the YAWL internal id explicitly in LDAP. This way the
specifications and running cases do not have to be changed to new resource ids. To determine the existing
ids of the resources defined in the ResourceService just export the Org Data in the Control Center using the
database icon with the floppy disk in the upper right corner. Open the file generated. You will see entries
like:

<participant id="PA-54220e10-8712-469e-9957-9fa5c4f1cc78">
<userid>testuser1</userid>

</participant>

<role id="RO-0c88f8f6-6b3d-4748-8e2d-e0c24331695a">
<name>Accounting</name>
<description/>
<notes/>

</role>

Use the value of the “id” attribute in this file to set the “yawlInternalId” of resources like participants and
roles to be migrated to LDAP.

246 CHAPTER 10. USING OPENLDAP FOR AUTHENTICATION

Chapter 11

Seeking Help

Manuals, like the software they describe, can never be considered to be complete. It is quite possible that
you run into an issue for which the documentation is lacking, or find a problem with the YAWL environment
that constitutes a bug. Alternately, you may come up with a new idea on how to enhance the system. Here
we briefly address the questions of how and where to seek help.

For queries about the YAWL software, we recommend that people use the help and discussion forum at the
YAWL User Group site (http://yaug.org). In posting a question, request or comment, please help us
as much as possible in answering you by explicitly stating which versions of various software components
you are using, providing the specification that is causing a problem if applicable, listing messages produced
in the console window and/or log files, providing a backup of the database, and so on. Allow up to a few
days for someone to respond to your request.

The YAWL Issues Lists can be used for reporting bugs or proposing enhancements – use https://github.
com/yawlfoundation/yawl/issues for matters relating to the YAWL engine and services, and https:
//github.com/yawlfoundation/editor/issues for Editor related matters. As attachments can be
easily provided, this is the preferred method for reporting bugs or requesting enhancements. Again, please
provide as much relevant information as possible. Also, before reporting an issue, please thoroughly check
the list to ensure that the issue has not already been reported.

Any feedback regarding this manual is most welcome and may be sent to yawlmanual@gmail.com.

We encourage forum posts, bug reports and enhancement requests. Providing these centrally means that
others can learn from the answers provided and, hopefully, people are inspired to respond to other people’s
requests. In this way we can manage progress on YAWL more efficiently.

247

http://yaug.org
https://github.com/yawlfoundation/yawl/issues
https://github.com/yawlfoundation/yawl/issues
https://github.com/yawlfoundation/editor/issues
https://github.com/yawlfoundation/editor/issues

248 CHAPTER 11. SEEKING HELP

Bibliography

[1] W.M.P. van der Aalst. The Application of Petri Nets to Workflow Management. Journal of Circuits,
Systems and Computers, 8(1):21–66, 1998.

[2] W.M.P. van der Aalst, L. Aldred, M. Dumas, and A.H.M. ter Hofstede. Design and implementation of
the YAWL system. In A. Persson and J. Stirna, editors, Proceedings of the 16th International Conference
on Advanced Information Systems Engineering (CAiSE 04), pages 142–159, Riga, Latvia, 2004. Springer-
Verlag, Berlin.

[3] W.M.P. van der Aalst, B.F. van Dongen, C.W. Günther, R.S. Mans, A.K. Alves de Medeiros, A. Rozinat,
V. Rubin, M. Song, H.M.W. Verbeek, and A.J.M.M. Weijters. ProM 4.0: Comprehensive Support for
Real Process Analysis. In J. Kleijn and A. Yakovlev, editors, Application and Theory of Petri Nets and
Other Models of Concurrency (ICATPN 2007), volume 4546 of Lecture Notes in Computer Science, pages
484–494. Springer-Verlag, Berlin, 2007.

[4] W.M.P van der Aalst and K.M. van Hee. Workflow Management: Models, Methods and Systems. MIT Press,
Cambridge, MA, USA, 2002.

[5] W.M.P. van der Aalst and A.H.M. ter Hofstede. Workflow Patterns: On the Expressive Power of (Petri-
net-based) Workflow Languages. In Kurt Jensen, editor, Proceedings of the Fourth International Workshop
on Practical Use of Coloured Petri Nets and the CPN Tools, volume 560 of DAIMI, pages 1–20, Aarhus,
Denmark, August 2002. University of Aarhus.

[6] W.M.P. van der Aalst and A.H.M. ter Hofstede. YAWL: Yet another workflow language. Information
Systems, 30(4):245–275, 2005.

[7] M. Adams. Facilitating Dynamic Flexibility and Exception Handling for Workflows. PhD Thesis, Queensland
University of Technology, Brisbane, Australia, 2007.

[8] M. Adams, A.H.M. ter Hofstede, W.M.P. van der Aalst, and D. Edmond. Dynamic, Extensible and
Context-Aware Exception Handling for Workflows. In Robert Meersman and Zahir Tari, editors, On
the Move to Meaningful Internet Systems 2007: CoopIS, DOA, ODBASE, GADA, and IS, OTM Confederated
International Conferences CoopIS, DOA, ODBASE, GADA, and IS 2007, Vilamoura, Portugal, November 25-
30, 2007, Proceedings, Part I, volume 4803 of Lecture Notes in Computer Science, pages 95–112. Springer-
Verlag, Berlin, 2007.

[9] M. Adams, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Worklets: A service-oriented
implementation of dynamic flexibility in workflows. In R. Meersman and Z. Tari et. al., editors, Pro-
ceedings of the 14th International Conference on Cooperative Information Systems (CoopIS’06), volume 4275 of
Lecture Notes in Computer Science, pages 291–308, Montpellier, France, November 2006. Springer-Verlag,
Berlin.

[10] M. de Leoni, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Visual Support for Work Assignment in
Process-Aware Information Systems. In M. Dumas, M. Reichert, and M.-C. Shan, editors, BPM 2008,
volume 5240 of Lecture Notes in Computer Science. Springer-Verlag, Berlin, 2008.

[11] F. Gottschalk, W.M.P. van der Aalst, M.H. Jansen-Vullers, and M. La Rosa. Configurable Workflow
Models. International Journal of Cooperative Information Systems, 17(2):177–221, 2008.

249

250 BIBLIOGRAPHY

[12] A.H.M. ter Hofstede, W.M.P van der Aalst, M. Adams, and N. Russell, editors. Modern Business Process
Automation: YAWL and its Support Environment. Springer, 2010.

[13] N. Lohmann and D. Weinberg. Wendy: A tool to synthesize partners for services. In J. Lilius and
W. Penczek, editors, 31st Int. Conference on Applications and Theory of Petri Nets and Other Models of
Concurrency, volume 6128 of Lecture Notes in Computer Science, pages 297–307. Springer-Verlag, Berlin,
2010.

[14] T. Murata. Petri nets: Properties, Analysis and Applications. Proceedings of the IEEE, 77(4):541–580,
1989.

[15] J.L. Peterson. Petri net theory and the modeling of systems. Prentice-Hall, Englewood Cliffs, USA, 1981.

[16] A. Rozinat, M. Wynn, W.M.P. van der Aalst, A.H.M. ter Hofstede, and C. Fidge. Workflow Simulation
for Operational Decision Support Using Design, Historic and State Information. In M. Dumas, M. Re-
ichert, and M.-C. Shan, editors, BPM 2008, volume 5240 of Lecture Notes in Computer Science, pages
196–211. Springer-Verlag, Berlin, 2008.

[17] N. Russell, W.M.P van der Aalst, and A.H.M. ter Hofstede. Workflow exception patterns. In E. Dubois
and K. Pohl, editors, Proceedings of the 18th International Conference on Advanced Information Systems
Engineering (CAiSE’06), volume 4001 of Lecture Notes in Computer Science, pages 288–302, Luxembourg,
Luxembourg, 2006. Springer-Verlag, Berlin.

[18] N. Russell, W.M.P. van der Aalst, A.H.M. ter Hofstede, and D. Edmond. Workflow resource patterns:
Identification, representation and tool support. In O. Pastor and J. Falcão e Cunha, editors, Proceedings
of the 17th Conference on Advanced Information Systems Engineering (CAiSE’05), volume 3520 of Lecture
Notes in Computer Science, pages 216–232, Porto, Portugal, 2005. Springer-Verlag, Berlin.

[19] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P. van der Aalst. Workflow data patterns:
Identification, representation and tool support. In L. Delcambre, C. Kop, H.C. Mayr, J. Mylopoulos,
and O. Pastor, editors, Proceedings of the 24th International Conference on Conceptual Modeling (ER 2005),
volume 3716 of Lecture Notes in Computer Science, pages 353–368, Klagenfurt, Austria, 2005. Springer-
Verlag, Berlin.

[20] N. Russell, A.H.M. ter Hofstede, D. Edmond, and W.M.P van der Aalst. newYAWL: achieving compre-
hensive patterns support in workflow for the control-flow, data and resource perspectives. Technical
Report BPM-07-05, BPM Center, 2007.

[21] N.C. Russell. Foundations of Process-Aware Information Systems. PhD Thesis, Queensland University of
Technology, Brisbane, Australia, 2007.

[22] H.M.W. Verbeek, Wil M.P. van der Aalst, and Arthur H.M. ter Hofstede. Verifying Workflows with Can-
cellation Regions and OR-joins: An Approach Based on Relaxed Soundness and Invariants. Computer
Journal, 50(3):294–314, 2007.

[23] M. Weske. Business Process Management: Concepts, Languages, Architectures . Springer-Verlag, Berlin,
2007.

[24] M.T. Wynn. Semantics, Verification, and Implementation of Workflows with Cancellation Regions and OR-
joins. PhD Thesis, Queensland University of Technology, Brisbane, Australia, 2006.

[25] M.T. Wynn, D. Edmond, W.M.P. van der Aalst, and A.H.M. ter Hofstede. Achieving a general, formal
and decidable approach to the OR-join in workflow using Reset nets. In G. Ciardo and P. Darondeau,
editors, Proceedings of the 26th International Conference on Application and Theory of Petri nets and Other
Models of Concurrency (Petri Nets 2005), volume 3536 of Lecture Notes in Computer Science, pages 423–443,
Miami, USA, 2005. Springer-Verlag, Berlin.

	Introduction
	What is YAWL?
	Obtaining the Latest Version of YAWL
	The YAWL Foundation
	Documentation

	Installation
	Requirements
	Installing YAWL
	YAWL Control Panel
	Manual Installation (YAWL Enterprise)

	Getting Started with YAWL
	Introduction
	Terminology
	Building a Simple Workflow Example
	Advanced Workflow Concepts
	Where To From Here

	The Editor
	Launching the YAWL Editor
	The YAWL Editor Workspace
	Working with YAWL Specification files
	The Control-Flow Perspective
	Changing the Appearance of Your Specification
	Cancellation Sets
	The Data Perspective
	The Resource Perspective
	The Preferences Dialog
	Connections
	Specification Analysis
	Automated Tasks
	Task Timers
	Document Type – passing files as data
	Custom Forms
	Task Documentation
	Configurable Logging
	Extended Attributes
	Configurable YAWL
	Checking for Updates
	About Dialog

	How to Manipulate Data in YAWL
	Introduction
	Data Visibility
	Data Transfer
	Data-related Issues
	Illustrative Examples

	The Runtime Environment
	Engine Configuration Settings
	Resource Service Configuration
	Logging On
	Administration
	Managing Non-Human Resources
	Resource Calendar Management
	Work Queues
	My Profile
	Team Queues

	The Monitor Service
	Installation and Logging On
	Active Cases
	Work Items
	Parameters

	The Worklet Service
	What is the Worklet Service?
	Installation
	The Worklet Service and Dynamic Flexibility
	The Worklet Service and Exception Handling
	Worklet Rule Sets
	The Worklet Management Plugin (or Rules Editor)
	Walkthrough – Using the Worklet Service
	Defining New Functions for Rule Node Conditions

	Other Services
	Document Store
	Web Service Invoker Service
	SMS Service
	Mail Service
	Twitter Service
	Digital Signature Service

	Using openLDAP for Authentication
	General Setup
	Populating the openLDAP Server using the YAWL openLDAP Schema
	Migrating to LDAP

	Seeking Help

